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Dynamics of pyrethroid resistance in
malaria vectors in southern Benin following
a large scale implementation of vector
control interventions
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Abstract

Background: Large-scale implementation of Indoor Residual Spraying and Insecticide Treated Nets has been
implemented in Plateau Department, Benin between 2011 and 2014. The purpose of this study was to monitor the
frequency and mechanisms of pyrethroid resistance in malaria vectors following the implementation of vector control
tools for malaria prevention.

Methods: Anopheles larvae were collected in 13 villages twice a year from 2012 to 2014. WHO tube tests were used to
assess the phenotypic resistance of each population to 0.05 % deltamethrin. Sibling species within Anopheles gambiae
complex were identified by PCR techniques. Taqman and biochemical assays were performed to identify the presence
of kdr mutations in individual mosquitoes and to detect any increase in the activity of enzymes putatively involved in
insecticide metabolism (oxidases, esterase and glutathione-S-transferases). Quantitative real time PCR was used to
measure the expression of three metabolic genes involved in pyrethroid resistance (CYP6P3, CYP6M2 and GSTD3).

Results: Anopheles populations showed < 90 % mortality to deltamethrin in all villages and at all time points.
The 1014 F kdr allele frequency was close to fixation (> 0.9) over the sampling periods in both An. gambiae
and An. coluzzii. Biochemical assays showed higher activities of alpha esterase and GST in field malaria vector populations
compared to susceptible mosquitoes. qPCR assays showed a significant increase of CYP6P3, CYP6M2 GSTD3 expression
in An. gambiae after a three-year implementation of LLINs.

Conclusion: The study confirmed that deltamethrin resistance is widespread in malaria vectors in Southern Benin. We
suspect that the increase in deltamethrin resistance between 2012 and 2014 resulted from an increased expression of
metabolic detoxification genes (CYP6M2 and CYP6P3) rather than from kdr mutations. It is urgent to evaluate further the
impact of metabolic resistance on the efficacy of vector control interventions using pyrethroid insecticides.
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Background
Global malaria vector control efforts rely on the use of
Long Lasting Insecticide Nets (LLINs) and Indoor Residual
Spraying (IRS). Twelve insecticides belonging to four
chemical classes (organochlorines, organophosphates, car-
bamates and pyrethroids) are approved by the World
Health Organization (WHO) for malaria vector control.
All of these insecticides are neurotoxic and either target
acetyl cholinesterase in the synapses or the voltage-gated
sodium channel (VGSC). Pyrethroids are the only insecti-
cides recommended by the WHO for LLINs because of
their low mammalian toxicity, fast action, and high insecti-
cidal activity [1]. Unfortunately, pyrethroid resistance has
developed in most malaria vector species worldwide in-
cluding Africa [2]. Indeed, two major mechanisms are
known to confer pyrethroid resistance in malaria vectors:
target site modification (kdr mutations) and increased me-
tabolism of insecticides through detoxifying enzymes. The
L1014F and L1014S substitutions in the para VGSC in the
domains III-IV are known to decrease affinity of pyre-
throids for this receptor [3]. Recently the mutation N1575Y
has been described to potentiate the effect of the L1014F
mutation [4]. The second resistance mechanism is called
“metabolic” through higher catalytic properties and/or over-
expression of carboxylesterases (COEs), cytochrome P450
mono-oxygenases (P450s) and Glutathione S-Transferases
(GSTs) [5]. Some members of these families such as
CYP6M2, CYP6Z2, CYP6P3 are known to contribute to
pyrethroid detoxification in Anopheles mosquitoes [6].
Both metabolic and target site (kdr) resistance are
present west Africa [7] and particularly Benin [8] and are
suspected to reduce the efficacy of vector control inter-
vention [9, 10].
Since 2007 the National Malaria Control Program

(NMCP) in Benin has implemented a nationwide distri-
bution of LLINs. In 2011, 5,135,942 LLINs were distrib-
uted in Benin [11] followed by 5,663,220 in 2014 with a
coverage of 97 % and 80 % respectively. In the study
area, LLINs distributed in 2011 contained permethrin/
deltamethrin (pyrethroids) while those distributed in
2014 contained deltamethrin only (data from NMCP).
After implementation of vector control interventions, it
is essential to monitor any changes in susceptibility/re-
sistance status of malaria vectors populations to public
health insecticide (WHO 2015). Many cross-sectional
studies were done to address the spatial distribution of
pyrethroid resistance in Anopheles at a given time [12]
but few longitudinal studies were conducted to address
temporal changes in pyrethroid resistance phenotype fol-
lowing the implementation of vector control interventions.
The aim of this study was to investigate the dynamic

of pyrethroid resistance in malaria vectors from 2012
to 2014 in 13 villages of Plateau Department and to
characterize the mechanisms involved by monitoring

changes in the frequency and expression of pyrethroid-
resistance markers. The outcomes shall help the NMCP to
implement more effective vector control strategy against
pyrethroid resistance populations.

Methods
Study area
The thirteen villages, selected on the basis of entomo-
logical and epidemiological criteria, were located in
southeast Benin. They belonged to four districts: Ifangni,
Sakete, Pobe, Ketou and were visited for mosquito col-
lection (Table 1). The study area is characterised by two
rainy seasons from April to July and from September to
October. The area is 3264 square km with a total popu-
lation of 407,116 inhabitants (General Census of Popula-
tion and Housing, 2002). Inhabitants of these villages are
mostly farmers, traders, gardeners and fish breeders.
Farmers grow cereals (maize, groundnuts, and beans),
tubers (yams, manioc) and some vegetable crops such as
tomato (Ifangni), chilli (Ketou). The fish breeding was
only conducted in Itassoumba village (Ifangni) where tila-
pias and catfish were bred in large fishponds. These ponds
provide a permanent breeding habitat for mosquitoes.

Mosquito collection
Mosquito collections were conducted during five rainy
seasons. The larval sampling periods were June to
August 2012 (termed June 2012), October to November
2012 (termed October 2012), May to July 2013 (termed
June 2013), October to November 2013 (termed October
2013) and June to August 2014 (termed June 2014). In
every survey, mosquito larvae were collected across the
villages from several temporary breeding habitats, including
household water storage [13]. Whenever possible, more
than six larval habitats were examined per village. Mosquito
larvae were transported to CREC, Cotonou and reared in
an insectary under standard conditions (relative humidity
80 % ± 10 % and temperature 25 °C ± 2 °C). Adult mosqui-
toes were maintained with 10 % honey solution after
emergence.

Insecticide susceptibility test
Bioassays were carried out on 2–5 old females using del-
tamethrin at the diagnostic dose of 0.05 % according to
standard WHO procedures [14]. The laboratory susceptible
reference strain of An. gambiae (Kisumu) was used to

Table 1 Localisation and demographic information of study area

Coordinates Area (km2) Population

Ifangni 6°40'N, 2°43'E 242 71,606

Sakete 6°44'N, 2°39'E 432 70,604

Pobe 6°58'N, 2°39'E 400 82,910

Ketou 7°21'N, 2°36'E 2183 100,499

Yahouédo et al. Parasites & Vectors  (2016) 9:385 Page 2 of 9



check the quality of the impregnated paper. After 1 h of in-
secticide exposure, mosquitoes were transferred to holding
tubes and fed with 10 % honey solution. Mortality was re-
corded 24 h post-exposure. For each test, mosquitoes were
also exposed to untreated paper to assess natural (control)
mortality and to keep a batch of non-exposed mosquitoes for
biochemical andmolecular studies. Abbott’s formulawas used
to correct themortality when controlmortality was between 5
and 20 %. After the test, legs were cut from control non-
exposed mosquitoes for molecular determination and bodies
were kept in RNA later at -20 °C for mRNA expression.
Another batchwas frozen at -80 °C for biochemical studies.

Molecular and biochemical assays
Genomic DNA was extracted using cetyl trimethyl am-
monium bromide (CTAB) 2 % method modified from
Doyle 1987 [15]. Briefly, mosquitoes were ground in
CTAB 2 % then heated in a water bath at 65° for 5 min.
Chloroform was added to tubes, mixed by inversion,
centrifuged and the upper phase transferred into another
tube. DNA was precipitated with isopropanol and then
washed once with 70 % cold ethanol. DNA was dried
and suspended in distilled water. Species determination
was performed by PCR [16]. The 1014 F and 1014S kdr
mutations were detected by allelic discrimination Taq-
man assays as described by Bass [17] on field non-
exposed females. Biochemical assay was used to quantify
amounts of mixed function of oxidases (MFO), glutathi-
one S-transferases (GST) and activities of non-specific
esterase (NSE) using 30 female mosquitoes (non-exposed)
for each village as described by Hemingway [18]. Each
plate contained 10 unfed Kisumu adults used as the sus-
ceptible control. These biochemical tests were carried out
on mosquitoes collected in June 2012 and June 2013 only
due to insufficient sample size from others surveys.

RNA extraction and reverse transcription quantitative PCR
Pools of each Anopheles species were used to determine
the relative gene expression of CYP6M2, CYP6P3 and
GSTD3 by qPCR using SYBR Green. Total mRNA was
extracted from batches of five mosquitoes (stored in
RNA later) using Isolate RNA micro kit (Bioline) accord-
ing to the manufacturer’s instructions. Quantity and
quality of mRNA were assessed using Nanodrop spec-
trophotometer (Nanodrop technologies). SuperScript III
Reverse TranscriptaseTM was used to synthesize first
strand cDNA. The Kisumu was used as reference strain
and the ribosomal gene RSP7 as housekeeping gene
(shown to be consistent and with no differential expres-
sion between susceptible and resistant [19]). Three bio-
logical replicates were run for each sample and primers
were designed on NCBI (http://www.ncbi.nlm.nih.gov/
tools/primer-blast/) (Table 2). Real time PCR was run on

Applied Bio systems ViiA7. Standard curves were gener-
ated using five times serially diluted cDNA sample to as-
sess PCR efficiency. The PCR efficiency criterion was
100 ± 10 % for all of the genes and a single melting curve
peak indicating specificity (Table 2). The cDNA was di-
luted 10-fold in this concentration that fitted within the
dynamic range of each qPCR and stored at -20 °C.

Data analysis
Mann-Whitney test implemented in R 2.15.2 software is
used to compare (i) mosquito mortalities between vil-
lages and sampling periods; and (ii) levels of enzymatic
activity between the lab reference strain and field mos-
quitoes. A linear mixed model with villages as random
effect implemented in R 2.15.2 software was used to test
the effect of surveys and villages on mortality. WHO cri-
teria for discriminating individuals for susceptibility/re-
sistance status were applied: 98–100 % mortality
indicating susceptibility; 90–97 % suspected resistance
and < 90 % mortality-confirmed resistance [14]. Spear-
man's correlation test was used to investigate (i) the link
between kdr allele frequency of field mosquitoes and mor-
tality; (ii) between Anopheles species and mortality; and
(iii) the fold expression of cytochrome P450 and the mor-
tality by survey. All differences were considered significant
for P-value < 0.05. The relative expression of target genes
were determined according to ΔΔCt methods described
by Schmittgen & Livak [20]. QPCR data were analysed
using simple statistical randomization tests implemented
in REST 2009 software.

Results
Vector composition
Anopheles coluzzii and An. gambiae were found in sym-
patry in all villages. In June 2012, An. coluzzii was pre-
dominant in all sites (82 %) and An. gambiae and
hybrids represented only 12 and 6 % of the species col-
lected, respectively. Proportions of hybrids decreased
over time to reach 0.3 % in June 2014. At the same time
the proportion of An. coluzzii and An. gambiae fluctu-
ated between 40 and 60 % (Fig. 1).

Resistance status
Figure 2 shows the phenotypic resistance of malaria vec-
tors to deltamethrin in thirteen villages during three
years of follow-up. Mortality in controls never exceeded
5 % indicating that no contamination occurred during
bioassays, then Abbott’s formula was not applied. Suscepti-
bility tests were run on 3323; 1203; 827; 2955; and 1192
female Anopheles in June 2012, October 2012, June 2013,
October 2013 and June 2014, respectively. There was no in-
formation available in three villages: Ketougbekon, Ko-
aïdjedo (June 2013), Ko-aïdjedo, Kokoumolou (October
2013), Ketougbekon, Ko-aïdjedo, Kokoumolou (June 2014),
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due to the absence of Anopheles mosquitoes in all breeding
habitats during the visit. The linear mixed model (AIC =
96, BIC = 57) showed that the sampling period had a sig-
nificant effect on mortalities (“time-effect”, P < 0.001) but
no effect of the villages (P = 0.9946) was recorded (Fig. 2).
In June 2012 and June 2014 (beginning of the rainy

season) all Anopheles populations from the 13 villages
were resistant to deltamethrin (mortalities < 90 %). From
October 2012 to October 2013, mortalities exceeded 90 %,
indicating that most of the Anopheles populations col-
lected in the villages were suspected to be resistant. Three
villages showed mortalities up to 97 % at the same period,
indicating susceptibility. There was no strong correlation
between mortality and proportions of both Anopheles spe-
cies: An. gambiae (ρ = 0.34, CI 95% = 0.12–0.52, P = 0.008),
An. coluzzii (ρ = -0.28, CI 95% = -0.510– -0.009, P = 0.030).

Kdr mutations
In the study area, genotyping results showed that 1014 F
kdr allele frequency increased over time i.e. f(1014 F)
was 0.67; 0.91; 0.92; 0.90 and 0.92 in June 2012, October
2012, June 2013, October 2013 and June 2014, respect-
ively (Table 4). Kdr mutation was almost fixed in the
study area and equally distributed between An. coluzzii
and An. gambiae. Anopheles susceptibility to deltameth-
rin was not correlated with the kdr frequency over time
(ρ = 0.146, CI 95% = 0.151–0.444, P = 0.336).

Metabolic resistance
Activities of esterases, glutathione S-transferases and
mixed function of oxidases were measured using mos-
quitoes collected in June 2012 and June 2013. Results
showed a higher GST activity in field Anopheles in June

Table 2 Primers used in RT-qPCR

Primer Accession number Primer sequence (5'–3') PCR efficiency (%)

CYP6M2 VectorBase: AGAP008212 Fw: TCGGGATGTGTGCGTTCGGC 100

Rv: TCGTGTCTCGCACCGCGTTC

GSTD3 VectorBase: AGAP004382 Fw: CTAAGCTTAATCCGCAACATACCA

Rv: GTGTCATCCTTGCCGTACAC 93

RPS7 VectorBase: AGAP010592 Fw: ATTGCCGAGCGCCGCATTCT

Rv: GACGCGGATACGCTTGCCGA 100

CYP6P3 VectorBase: AGAP002865 Fw: TGTGATTGACGAAACCCTTCGGAAG

Rv: ATAGTCCACAGACGGTACGCGGG 97

Fig. 1 Proportions of Anopheles gambiae (s.I.) major species over sampling periods
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2012 and 2013 compared to the susceptible reference
strain (Table 3). Similarly, the level of α-esterase activity of
field mosquitoes was significantly higher than that at Ki-
sumu in June 2012. Conversely, we did not report higher
activity of P450 in field populations at the two surveys
compared to the susceptible reference strain (P > 0.05).
The expression of detoxification genes was also measured

by RT-qPCR in both species (Fig. 3). Only An. gambiae
showed upregulation of metabolic genes compared to refer-
ence strain. GSTD3 was upregulated in June 2012 and June
2014, the mean fold changes (FC) were 1.8 and 49.3,
respectively (P < 0.001) (Fig. 3). CYP6P3 and CYP6M2 were
upregulated in June 2014 during the beginning of the rainy
season; the FC were 4.8 and 44.42, respectively (P < 0.001).
These genes were mostly down regulated in October 2012
and October 2013, suggesting a relationship between the
level of expression of some P450 markers and the resistance
phenotype to deltamethrin.

Discussion
This study addressed the dynamic of deltamethrin resistance
in malaria vectors in the department of Plateau Benin,

following a large scale implementation of malaria vector con-
trol tools. A combination of biological, biochemical and
molecular assays were used to assess the frequency and
mechanisms of pyrethroid-resistance in An. gambiae (s.l.) col-
lected in 13 villages over three years. The results showed that
An. coluzzii and An. gambiae were found in sympatry during
all of the sampling periods but at various frequencies. A pre-
vious study demonstrated similar distribution of sibling spe-
cies within An. gambiae (s.l.) complex in the study area [21].
Bioassay results showed significant variations of delta-

methrin phenotypic resistance according to the surveys.
Anopheles populations from the 13 villages were resistant
to deltamethrin in June 2012 and June 2014 (< 90 % mor-
tality) but mostly susceptible in October 2012 and 2013
(only 5 of 13 populations showed mortality < 90 %). This
strong variation of phenotypic resistance in such a short
period of time is difficult to explain knowing that environ-
mental conditions did not change much between surveys
(temperature 25 ± 2 °C and humidity 80 ± 10 %). The fre-
quency of the 1014 F kdr mutation was high in June 2012
in both species and did not increase much until June 2014.
Consequently, it is unlikely that the kdr mutation alone

Fig. 2 Phenotypic resistance to deltamethrin in Anopheles gambiae (s.l.) The scatter plot represents the mean mortalities with standard deviation
based on 13 villages (a) and also according to surveys (b). The Mann-Whitney test showed significant time effect of sampling period on mosquito mor-
tality while the variability between villages had no effect

Table 3 Detoxification enzyme activities of Anopheles in June 2012 and June 2013

June 2012 June 2013

Mean Anopheles Mean reference FC P-value Mean Anopheles Mean reference FC P-value

α-Naphthyl acetate 0.202 ± 0.08 0.118 ± 0.03 1.71 0.0001 0.140 ± 0.06 0.147 ± 0.08 0.95 0.463

β-Naphthyl acetate 0.141 ± 0.07 0.101 ± 0.04 1.39 0.0811 0.105 ± 0.10 0.117 ± 0.09 0.89 0.041

Oxydase (P450) 0.094 ± 0.05 0.090 ± 0.06 1.04 0.7617 0.038 ± 0.02 0.091 ± 0.03 0.41 0.0166

GST 0.264 ± 0.15 0.142 ± 0.03 1.86 <0.0001 0.521 ± 0.63 0.280 ± 0.65 1.86 0.001

Enzyme activities are expressed by mg of total proteins. Fold Change (FC) is the ratio of mean activity in Anopheles/mean activity in reference strain
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contributed greatly to the phenotype observed. A previous
study questioned the causal association between kdr genotype
and pyrethroid resistance (especially for type II pyrethroids)
and suggested that the kdr genotype may not necessarily
be the best predictor of resistance in malaria vectors. The
1014S kdr mutation originally from East Africa [22] was not
detected in the present study. So far this mutation was found
in Benin at a very low frequency in An. arabiensis [8].
In contrast, a significant increase in metabolic gene ex-

pression was reported in An. gambiae (s.s.) over the three-
year follow-up. Overexpression of three metabolic genes,
CYP6M2 (> 40-fold), GSTD3 (> 40-fold) and CYP6P3 (> 4-
fold), were reported in June 2014, hence indicating a recent
and strong selection pressure on this mosquito species.

Interestingly, the high gene expression was associated with
low mortality rates as measured by WHO bioassays. This
finding supports the involvement of these metabolic
markers in deltamethrin-resistant phenotype. Downregula-
tion of these genes in June 2012 despite the presence of
resistance phenotype may be explained by the low number
of An. gambiae collected in that survey (Table 4) and/or by
the involvement of other (non-detectable) metabolic de-
toxification genes. The differential expression of metabolic
markers between An. gambiae and An. coluzzi has been
reported in Benin [23] and may reflect differential exposure
to insecticides/xenobiotics at larval and/or adult stage.
CYP6M2 and CYP6P3 are regularly associated with

pyrethroid resistance [24] and have been validated as

Fig. 3 Relative expression of detoxification genes. ΔΔCt method was used for analysis. Bar charts represent the mean expression of three
enzymes of field Anopheles. Error bars represent 95 % confidence interval. ND, no data
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Table 4 Kdr allelic frequencies in An. coluzzi and An. gambiae. f(1014)F was determined by qPCR. N represents the number of alleles tested

Villages June 2012 October 2012 June 2013 October 2013 June 2014

An. coluzzi An. gambiae An. coluzzi An. gambiae An. coluzzi An. gambiae An. coluzzi An. gambiae An. coluzzi An. gambiae

f(1014)F N f(1014)F N f(1014)F N f(1014)F N f(1014)F N f(1014)F N f(1014)F N f(1014)F N f(1014)F N f(1014)F N

Adjozoume 0.65
(0.51–0.76)

62 0.7
(0.34–0.93)

10 1
(0.39–1)

4 1
(0.90–1)

38 1
(0.83–1)

20 1
(0.95–1)

72 − − 1
(0.92–1)

48 − − 1
(0.92–1)

50

Agbarou 0.73
(0.56–0.85)

40 0.75
(0.42–0.94)

12 1
(0.39–1)

4 1
(0.91–1)

42 0.8
(0.61–0.92)

30 1
(0.83–1)

20 0.83
(0.71–0.90)

70 0.99
(0.93–0.99)

82 0.88
(0.78–0.93)

82 1
(0.91–1)

40

Alabansa 0.73
(0.59–0.83)

62 0.68
(0.47–0.84)

28 0.82
(0.65–0.93)

34 1
(0.94–1)

68 0.89
(0.75–0.97)

38 0.97
(0.89–0,99)

66 0.92
(0.77–0.98)

36 0.99
(0.96–0.99)

170 0.89
(0.76–0.96)

46 1
(0.93–1)

54

Djohounkole 0.68
(0.58–0.77)

92 1
(0.54–1)

6 0.89
(0.65–0.98)

18 0.90
(0.68–0,98)

20 0.84
(0.71–0.92)

56 0.91
(0.74–0.98)

32 0.94
(0.84–0.98)

62 1
(0.95–1)

88 0.83
(0.70–0.91)

58 1
(0.73–1)

12

Idena3 0.68
(0.58–0.76)

118 0.75
(0.34–0,96)

8 0.88
(0.47–0,99)

8 0.99
(0.94–0,99)

106 0.93
(0.66–0.99)

14 1
(0.87–1)

28 0.71
(0.41–0.91)

14 1
(0.97–1)

182 0.87
(0.75–0.94)

54 0.97
(0.88–0.99)

46

Igbo-abikou 0.73
(0.54–0.87)

30 0.83
(0.35–0,99)

6 0.85
(0.65–0.95)

26 0.98
(0.93–0.99)

104 0.75
(0.34–0.96)

8 1
(0.95–1)

90 1
(0.76–1)

14 1
(0.97–1)

130 0.78
(0.65–0.87)

60 1
(0.91–1)

42

Itasumba 0.66
(0.50–0.79)

44 0.5
(0.19–0.98)

2 0.78
(0.69–0.86)

96 1
(0.63–1)

8 0.79
(0.69–0.86)

100 1
(0.15–1)

2 0.82
(0.75–0.86)

202 − − 0.71
(0.60–0.80)

80 _ −

Ketougbekon 0.65
(0.50–0.78)

52 0.83
(0.35–0.99)

6 0.84
(0.71–0.92)

56 0.96
(0.87–0.99)

68 0,88
(0.71–0.96)

32 1
(0.81–1)

18,00 0.91
(0.84–0.95)

122 0.84
(0.73–0.91)

74 0.90
(0.80–0.96)

72 0.86
(0.67–0.95)

28

Ko-aidjedo 0.62
(0.40–0.79)

26 0.42
(0.15–0.72)

12 0.5
(0.19–1)

2 0.96
(0.89–0.99)

84 − − − − − − − − − − − −

Ko-Dogba 0.64
(0.52–0.75)

76 0.73
(0.56–0.85)

40 1
(0.39–1)

4 0.92
(0.83–0.96)

84 0.83
(0.51–0.97)

12 1
(0.84–1)

22 0.5
(0.06–0.93)

4 0.97
(0.90–0.99)

90 − − − −

Kokoumolou 0.60
(0.46–0.71)

62 0.79
(0.49–0.95)

14 0.87
(0.79–0,92)

108 1
(0.86–1)

26 0.9
(0.68–0.98)

20 1
(0.81–1)

18 − − − − − − − −

Tchaada 0.84
(0.74–0.90)

98 − − 0.94
(0.80–0.99)

34 0.92
(0.77–0.98)

36 0.86
(0.71–0.94)

42 0.88
(0.47–0.99)

8 0.92
(0.84–0.96)

92 0.98
(0.87–0.99)

68 0.93
(0.79–0.98)

40 1
(0.63–1)

8

Zihan 0.36
(0.23–0.49)

58 0.63
(0.24–0.91)

8 0.89
(0.80–0.94)

82 0.93
(0.79–0.98)

40 0.84
(0.72–0.91)

68 1
(0.83–1)

20 0.78
(0.67–0.86)

78 1
(0.94–1)

68 1
(0.69–1)

10 1
(0.91–1)

40
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pyrethroid metabolizers [25, 26]. No correlation was noted,
however, between the oxidase activity and P450 gene ex-
pression. This can be explained by a lack of sensitivity and
specificity of biochemical assays that employ generic heme
peroxidase assays that are recognized by many members of
the enzyme family [25]. The use of mixed populations (An.
gambiae and An. coluzzii) during biochemical tests may
have also affected the outcomes. Overexpression of
CYP6M2 and CYP6P3 is widespread in West Africa includ-
ing Benin, Nigeria [19], Ghana [26] and should be routinely
monitored by national malaria control programmes. In
addition, GSTD3 was found up regulated in Anopheles in
June 2012 and 2014 hence correlating results of both,
the biochemical test and bioassays. GSTD3 was found
upregulated in DDT-resistant An. arabiensis and An.
gambiae in Burkina Faso and Benin, respectively
[8]. GSTs are regularly found overexpressed in many
pyrethroid-resistant mosquitoes [27, 28]. Some studies sug-
gested their potential role against oxidative stress [29] and
in pyrethroid sequestration [30]. Although the role of mos-
quito GSTs in pyrethroid resistance is likely, understanding
the underlying mechanisms requires further investigations.
In Benin, the use of pesticides for both vector control

and agricultural practices (cotton crops and vegetable
farms) are known to be a major source of selection
pressure on malaria vectors [31–33]. For example, a
randomized controlled trial conducted in southern
Benin showed an increase in the kdr frequency from 20
to 80 % in An. gambiae eighteen months after the dis-
tribution of LLIN at community level [33]. We suspect
that the increased coverage of deltamethrin-LLINs in
2014 in the study area (80 %, NMCP) has contributed to
selection for pyrethroid-resistance metabolic markers. The
role of agricultural practices in the selection of insecticide
resistance in An. gambiae remains unknown. No signifi-
cant changes in land use and agricultural practices were
observed during the three-year follow-up but we could
not record the type and amount of insecticides used by
native farmers for crop protection. Similarly, the larval ex-
posure to various xenobiotics (e.g. heavy metals, oils, fun-
gicides, pollutants) that are known to modulate/enhance
the metabolic detoxification profile of mosquitoes could
not be investigated [34, 35]. Clearly, much work has to be
done to address the environmental factors contributing
to resistance selection in malaria vectors in Benin.
The present study was part of a multidisciplinary pro-

ject funded by the Bill & Melinda Gates Foundation
that aims at addressing whether insecticide resistance
can impact on the effectiveness of malaria vector con-
trol tools in Africa. Up to now the results of the first
year follow-up did show substantial impact of insecti-
cide resistance on the efficacy of LLINs in southern
Benin [36] but analyses of years 2 and 3 are still
ongoing.

Conclusions
This study monitored the levels and mechanisms of delta-
methrin resistance in major malaria vectors in the Plateau
department, Benin, after a three-year implementation of
malaria vector control. The results showed that resistance
to deltamethrin in malaria vectors was widespread and
multifactorial. We also suspect that the increase in delta-
methrin resistance between 2012 and 2014 resulted from
an increased expression of metabolic detoxification genes
(CYP6M2 and CYP6P3) rather than kdr mutations. It is
now urgent to evaluate further the impact of metabolic re-
sistance on the efficacy of vector control interventions
using pyrethroid insecticides.
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