17 research outputs found

    Three dimensional frequency analysis of bidirectional functionally graded thick cylindrical shells using a radial point interpolation method (RPIM)

    Get PDF
    This paper considers a functionally graded (FG) shell using a meshless radial point interpolation method (RPIM). The material is assumed to be bidirectional FG, where the variation is present in both the radial and the axial directions. Based on the three-dimensional equations of motion, the frequency equations are stated using RPIM. Numerical results are presented for a thick shell for various boundary conditions. These results illustrate the influence from the material variation concerning eigenfrequencies and eigenmodes. In addition, the study shows that the RPIM is an efficient method to solve dynamical shell problems

    Analytical Modelling of Electromagnetic Bulging of Thin Metallic Tubes

    Get PDF
    © 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. This is the accepted manuscript version of a conference paper which has been published in final form at https://doi.org/10.1007/978-981-15-9505-9_70The main objective of this paper is to develop an analytical method based on the energy balance equation to model the plastic deformation of thin metallic tubes in a high velocity forming process under axisymmetric conditions. A yield criterion is proposed, which involves the coupled effect of the axial and circumferential internal force resultants. Using a combination of power-law strain hardening and strain rate hardening flow stress models, both strain hardening and strain rate effects are included. The proposed method permits consideration of the influence of different terms of kinetic energy and plastic work of the tube. The study presents a typical electromagnetic tube expansion model, using a dynamic high strain-rate forming method with strain-rates above 103 s−1. In this process, the deformation of the workpiece is achieved by the interaction of a current generated in the workpiece with a magnetic field generated by a coil adjacent to the workpiece. The results reveal that the achieved high strain rates influence the plastic flow stress and the final permanent radial deformation, consequently. The study concluded that an appropriate shape function eventuates a more accurate estimation of both the radial displacement and the deformed meridian profile

    Organic and inorganic equivalent models for analysis of red blood cell mechanical behaviour.

    No full text
    From PubMed via Jisc Publications RouterHistory: received 2021-06-09, revised 2021-09-18, accepted 2021-09-26Publication status: aheadofprintExperimental investigation into the mechanical response of red blood cells is presently impeded with the main impediments being the micro dimensions involved and ethical issues associated with in vivo testing. The widely employed alternative approach of computational modelling suffers from its own inherent limitations being reliant on precise constitutive and boundary information. Moreover, and somewhat critically, numerical computational models themselves are required to be validated by means of experimentation and hence suffer similar impediments. An alternative experimental approach is examined in this paper involving large-scale equivalent models manufactured principally from inorganic, and to lesser extent organic, materials. Although there presently exists no known method providing the means to investigate the mechanical response of red blood cells using scaled models simultaneously having different dimensions and materials, the present paper aims to develop a scaled framework based on the new finite-similitude theory that has appeared in the recent open literature. Computational models are employed to test the effectiveness of the proposed method, which in principle can provide experimental solution methods to a wide range of practical applications including the design of red-blood cell nanorobots and drug delivery systems. By means of experimentally validated numerical experiments under impact loading it is revealed that although exact prediction is not achieved good accuracy can nevertheless be obtained. Furthermore, it is demonstrated how the proposed approach for first time provides a means to relate models at different scales founded on different constitutive equations. [Abstract copyright: Copyright © 2021 Elsevier Ltd. All rights reserved.

    IMECE2010-38693 Multi-objective crashworthiness optimization of Composite Hat-shape Energy Absorber using GMDH-type Neural Networks and Genetic Algorithms

    No full text
    Abstract Reducing the weight of car body and increasing the crashworthiness capability of car body are two important objectives of car design. In this paper, a multi-objective optimization for optimal composite hat-shape energy absorption system is presented At the first, the behaviors of the hat shape under impact, as simplified model of side member of a vehicle body, are studied by the finite element method using commercial software ABAQUS. Two meta-models based on the evolved group method of data handling (GMDH) type neural networks are then achieved for modeling of both the absorbed energy (E) and the Tsai-Hill Failure Criterion (TS) with respect to geometrical design variables using those training and testing data obtained models. The obtained polynomial neural metamodels are finally used in a multi-objective optimum design procedure using NSGA-II with a new diversity preserving mechanism for Pareto based optimization of hat-shape. Two conflicting objectives such as maximizing the energy absorption capability (E), minimizing the Tsai-Hill Failure Criterion are considered in this work
    corecore