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1 Introduction

The investigation of the governing equations for cylindrical shells has been
of great interest in the history of elastodynamic theory. Most work consider
modeling of thin shells using simplified approximate theories (Leissa, 1973) due
to the complexity of the exact three-dimensional theory. However, in order to
obtain accurate results for thick shells there are needs to adopt the three-
dimensional theory. In the case of homogeneous isotropic shells, such work
are presented adopting the method due to Pochhammer (1876) and Chree
(1889), e.g. (Gazis, 1958; Armenakas et al., 1969). More recent solutions to
homogeneous cylindrical shells are presented using finite element methods
(FEM) (Gladwell and Vijay, 1975; Wang and Williams, 1996; Loy and Lam,
1999; Buchanan and Yii, 2002), or series solution techniques (Hutchinson and
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El-Azhari, 1986; McDaniel and Ginsberg, 1993; Hägglund and Folkow, 2008),
while So and Leissa (1997) use Ritz analysis.

Works on inhomogeneous shells, notably functionally graded (FG) shells, have
recently attracted much attention. Functionally graded materials (FGM) are
composite materials made of two (or more) phases of material constituents,
where the phase distribution varies continuously. The most used group of FGM
consists of ceramic and metal phases. Such FGM were developed in the mid
1980s where the strength of the metal and the heat resistance of the ceramic
made these materials well suited for high-temperature environments. FGM
also possess a number of other advantages compared to other inhomogeneous
materials such as improved residual stress distribution, higher fracture tough-
ness, and reduced stress intensity factors. Hence, FGM are nowadays used in
many different fields of engineering (Birman and Byrd, 2007; Shen, 2009). FG
shells are studied using various hypotheses such as Love’s theory (Loy et al.,
1999; Pradhan et al., 2000), first order shear deformation theory (Kadoli and
Ganesan, 2006; Ansari and Darvizeh, 2008; Tornabene et al., 2009), higher or-
der theory (Patel et al., 2005) and three-dimensional theory (Vel, 2010; Asgari
and Akhlaghi, 2011). Among the work using three-dimensional theory, a series
solution technique is adopted by Vel (2010) while FEM is used by Asgari and
Akhlaghi (2011).

The vast majority of papers on FG structures consider material gradation in
one direction only. However, by developing structures that are multidirectional
functionally graded, it is possible to design a material distribution that more
efficiently fulfil engineering demands such as resisting high-temperature envi-
ronment in several directions (Nemat-Alla, 2003). Another possible application
is to optimize the material configuration for a specific purpose, e.g. to con-
trol eigenfrequencies. This latter case is the object for studying bidirectional
functionally graded beams by Goupee and Vel (2006) and plates by Qian and
Batra (2005). More recently, a bidirectional functionally shell is presented by
Asgari and Akhlaghi (2011) for free-free boundary conditions.

The mentioned work on bidirectional functionally graded beams and plates
(Goupee and Vel, 2006; Qian and Batra, 2005) use meshless methods (MM)
such as the element free Galerkin (EFG) method and the meshless local
Petrov-Galerkin (MLPG) method, respectively. Various other MM have also
gained popularity for solving elastodynamic problems the last decade, e.g. the
reproducing kernel particle method (RKPM) and point interpolation meth-
ods (PIM). Comprehensive descriptions of different MM are presented by Liu
(2002); Liu and Gu (2005) and in a review paper by Nguyen et al. (2008).

In FEM the elements are connected together by nodes in a predefined man-
ner, while MM use scattered nodes not forming a mesh. Moreover, the shape
functions in MM are of higher order that can change for each point of inter-
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est, contrary to predefined low order element shape functions often used in
FEM. Hereby problems in FEM related to meshing and re-meshing (adaptive
analysis) procedures are more easily treated by MM. The drawback in MM
are that the computational cost is usually higher than FEM, and that several
parameters may have to be chosen in a delicate way.

The PIM have a convenient property as their shape functions possess Kro-
necker delta behavior, which is not generally the case for all MM. Among
the different approaches using PIM, the radial point interpolation method
(RPIM) is a widely used method that is known to render stable codes for
arbitrary nodal distributions. The RPIM has rather simple shape functions
that are easy to differentiate. Results presented in the literature show that
RPIM often has higher convergence rate and accuracy than traditional FEM
(Liu and Gu, 2005). The radial basis functions in RPIM could be of different
types, of which multiquadric (MQ) functions are the most used since being
generally superior to other functions like the Gaussian radial function (EXP).
It should be noted that these radial basis functions involve several parameters
to be chosen manually. It is important to choose these carefully as they have
pronounced effect on the accuracy (Wang and Liu, 2002a,b; Liu et al., 2003,
2005).

There are several reports on dynamic shells using MM. Homogeneous shells
are studied using various shell theories adopting numerical methods such as
the EFG method for Love’s theory (Liu et al., 2002), a radial basis function
method using Reddy’s third order theory (Ferreira et al., 2006) and the natural
neighbor radial point interpolation method (NNRPIM) adopting the three-
dimensional equations of motion (Dinis et al., 2011). Concerning FG shells,
first order shear deformation theories are presented in both Zhao et al. (2009)
using an element-free kp-Ritz method, and by Roque et al. (2010) using a
radial basis function method. Recently a review with emphasis on EFG and
RKPM for plates and shells is presented by Liew et al. (2011).

There are to our knowledge no presented work using MM on dynamic three-
dimensional equations for FG shells. The object of this paper is to use the
RPIM with MQ radial basis functions on a bidirectional FG shell according
to the three-dimensional dynamical equations of motion. Results for eigenfre-
quencies and eigenmodes are presented using different boundary conditions.

2 Governing equations

Consider a cylindrical shell of length L with inner radius ri and outer radius
ro. Cylindrical coordinates are used with radial coordinate r, circumferential
coordinate θ and axial coordinate z, where the corresponding displacement
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fields are

u = [u v w]T . (1)

The cylinder is inhomogeneous, isotropic and linearly elastic with density
ρ(r, θ, z), elastic moduli E(r, θ, z) and Poisson’s ratio ν(r, θ, z). The elasto-
dynamic shell equations are expressed

Aσ = ρü, (2)

where

σ = [σrr σθθ σzz σrθ σrz σθz]
T , (3)

and

A =















∂/∂r + 1/r −1/r 0 1/r ∂/∂θ ∂/∂z 0

0 1/r ∂/∂θ 0 ∂/∂r + 2/r 0 ∂/∂z

0 0 ∂/∂z 0 ∂/∂r + 1/r 1/r ∂/∂θ















. (4)

The stress-strain relation is written

σ = Dǫ, ǫ = [εrr εθθ εzz γrθ γrz γθz]
T , (5)

where

D =
E

(1 + ν)(1− 2ν)



































1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 (1− 2ν)/2 0 0

0 0 0 0 (1− 2ν)/2 0

0 0 0 0 0 (1− 2ν)/2



































.

(6)

The relation between strains and displacements are

ǫ = Lu, (7)
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where the operator matrix L is defined

L =



































∂/∂r 0 0

1/r 1/r ∂/∂θ 0

0 0 ∂/∂z

1/r ∂/∂θ ∂/∂r − 1/r 0

∂/∂z 0 ∂/∂r

0 ∂/∂z 1/r ∂/∂θ



































. (8)

Now, assuming n nodes in the support domain for a specific point in the shell,
the displacement field may be approximated through

u = Nû, û = [u1 v1 w1 · · · un vn wn ]T . (9)

Here the shape function matrix N used for the RPIM is discussed further in
Section 3. Introducing the strain-displacement matrix operator B = LN the
strains and stresses can be written as

ǫ = Bû, σ = DBû. (10)

Consequently, by adopting variational calculus, the resulting set of equations
become

M¨̂u+Kû = F, (11)

where

M =
∫

V
ρNTNdV, K =

∫

V
BTDBdV,

F =
∫

V
NT fV dV +

∫

A
NT fA dA.

(12)

The force term F involves possible body forces fV and surface forces fA.

3 Radial Point Interpolation Method (RPIM)

This section gives a brief description of the radial point interpolation method
(RPIM) as presented in Liu and Gu (2005); Liu et al. (2005). Consider a scalar
field η(x) in a 3D domain Ω. Assume that N nodes at xi (i = 1, 2, . . . , N)
are distributed throughout Ω. The meshfree method is based on that the field
η(x) at any point x is interpolated using function values at field nodes within
a local support domain of the point x. As only the surrounding nodes effect
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the field at that point, the nodes outside the domain have no influence on it.
This is written as

η(x) =
n
∑

i=1

Ψi(x)η̂i = ΨT (x)η̂, (13)

where n = n(x) is the number of nodes within the local support domain,
while η̂i is the nodal field variable and Ψi(x) is the shape function at the ith
node. Similar to FEM, the shape function possesses a Kronecker delta function
property

Ψi(xj) = δij ⇒ η(xi) = η̂i, (14)

and is of unity partition

n
∑

i=1

Ψi(x) = 1. (15)

Note that the support domains can have different shapes, although circular
form is perhaps most often used. The shape functions are obtained using radial
basis functions

η(x) =
n
∑

i=1

Ri(x)ai +
m
∑

j=1

Pj(x)bj = RT (x)a+PT (x)b. (16)

Here Ri(x) are the n radial basis functions and Pj(x) are the m polynomial
basis functions in coordinates x, while ai and bj are constants. The polyno-
mial functions Pj(x) are included to improve the accuracy and interpolation
stability. The radial basis functions Ri(x) depend on the distance s between
x and a node at xi, that is

s =
√

(x− xi)2 + (y − yi)2 + (z − zi)2. (17)

There are a number of radial basis functions given in the literature, and the
multiquadric (MQ) function used here has the form

Ri(x) =
(

s2 + (αcdc)
2
)q

, (18)

where the influence from the shape parameters αc, dc and q are investigated
in the numerical examples. The polynomial basis functions are

P(x) = [1 x y z x2 xy xz · · · Pm(x) ]T . (19)

The coefficients ai and bj are derived next. Using Eq. (14) in Eq. (16) gives

η̂ = R̂a+ P̂b, (20)
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where the rows in these matrices consists of the vectors RT (xi) and PT (xi)

R̂ =





















R1(x1) R2(x1) · · · Rn(x1)

R1(x2) R2(x2) · · · Rn(x2)

· · · · · · · · · · · ·

R1(xn) R2(xn) · · · Rn(xn)





















, P̂ =





















1 x1 y1 · · · Pm(x1)

1 x2 y2 · · · Pm(x2)

· · · · · · · · · · · ·

1 xn yn · · · Pm(xn)





















. (21)

In addition to these n equations for the (n + m) unknowns ai and bj , the
needed m extra equations are obtained through

P̂
T
a = 0. (22)

Hence, by solving Eq. (20) adopting Eq. (22) it is possible to express a and b
in terms of η̂, which may be used in Eq. (16) to give a set of equation on the
form Eq. (13).

3.1 RPIM for free vibrations of cylindrical shells

From now on, assume a fix frequency ansatz with frequency ω. Moreover, the
material inhomogeneities are assumed to be independent of the circumferential
coordinate θ. Consequently, the cylindrical shell displacement fields may be
written

u(r, θ, z, t) = U(r, z) cos(kθ)eiωt,

v(r, θ, z, t) = V (r, z) sin(kθ)eiωt,

w(r, θ, z, t) = W (r, z) cos(kθ)eiωt,

(23)

where k is the circumferential wave number. Hereby, the different modes k
become independent of each other, and can be treated separately. Note that
k = 0 means the axisymmetric vibration. By mutually exchange the cose
function to a sine function and vice verse, the pure torsional mode is obtained
for k = 0 . Adopting Eq. (23) for the node displacements û, the displacement
shape function matrix N in Eq. (9) follows from Eq. (13) according to

N =















Ψ1 cos(kθ) 0 0 · · · Ψn cos(kθ) 0 0

0 Ψ1 sin(kθ) 0 · · · 0 Ψn sin(kθ) 0

0 0 Ψ1 cos(kθ) · · · 0 0 Ψn cos(kθ)















,

(24)

where the shape functions Ψi(r, z) are independent of θ. Hence, by using Eq.
(24) in Eq. (11) for free vibrational problems without body forces, this results
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in the standard eigenvalue problem

(K− ω2M)û = 0. (25)

4 Numerical results

In order to illustrate the RPIM applied to vibrational problems on an inhomo-
geneous shell, eigenfrequencies for various boundary conditions are presented
for a functionally graded material (FGM). The material consists of a metal
and ceramic phase, which may be graded in two dimensions: r and z. Denote
the metal volume fraction function Vm(r, z) and the corresponding ceramic
volume fraction Vc(r, z) = 1 − Vm(r, z). These functions could be modeled in
numerous ways, but as an illustration consider the simple case

Vm(r, z) =
(

ro − r

ro − ri

)nr

(

L− z

L

)nz

. (26)

Here the power law exponents nr and nz are assumed to be non-negative
real numbers. According to Eq. (26), a pure metal phase is obtained for
nr = nz = 0, while a one-dimensional graded material is modeled by set-
ting only one of the exponents to zero. The general bidirectional FG case
corresponds to a continuously decreasing metal volume fraction as r and z in-
crease, resulting in pure ceramic material at the outer radius r = ro and at the
end z = L. Consequently this material constitution could be applicable on a
shell where the outer surface and/or one of the ends are in a high temperature
environment.

There are various methods to determine the material properties in FG mate-
rials. Among these the rule of mixture (Voigt model) is perhaps the simplest,
while other theories such as the Mori-Tanaka model and the self-consistent
model take microstructural aspects into account, see discussion in Shen (2009).
The Voigt model assumes that the various effective material properties (de-
noted by Q) are proportional to the volume ratio according to

Q(r, z) = QmVm(r, z) +QcVc(r, z). (27)

The Mori-Tanaka model assumes that the effective density ρ(r, z) follow from
(27), while the elastic variables are obtained through

K −Kc

Km −Kc

=
Vm

1 + (1− Vm) (3(Km −Kc)/(3Kc + µc))
, (28)

µ− µc

µm − µc

=
Vm

1 + (1− Vm)(µm − µc)/(µc + f)
, (29)
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where

f =
µc(9Kc + 8µc)

6(Kc + 2µc)
. (30)

Here K is the bulk modulus K = λ + 2µ/3, where the Lamé parameters are
λ = Eν/((1+ν)(1−2ν)) and µ = E/(2(1+ν)). Although the results from the
Voigt and the Mori-Tanaka models differ to some extent, the overall behavior
illustrated in the figures below are similar for both theories. From now on,
consider only the Mori-Tanaka model.

As for the materials studied, the metal phase is aluminum (Al) while the ce-
ramic phase is silicon carbide (SiC), see properties in Table 1. This pronounced
difference in elastic moduli E between materials imply that the eigenfrequen-
cies are sensitive to the material constitution. Hereby the eigenfrequencies
for shells made of pure SiC is almost 2.5 times the values for pure Al. Note
that this case differ from the similar shell problem addressed by Asgari and
Akhlaghi (2011), where there seem to be a confuse in the chosen material data.

Material E (GPa) ρ (kg/m3) ν

Al 70 2700 0.3

SiC 420 3100 0.15

Table 1
Material properties

In order to see the effects from different boundary conditions on the FG shell,
the following four conditions are studied: clamped-clamped (CC), free-free
(FF) and two types of simply supported-simply supported (SS1, SS2). The
SS1 case is reported by Buchanan and Yii (2002)

v(r, θ, z, t) = w(r, θ, z, t) = 0, σrz(r, θ, z, t) = 0, z = 0, L, (31)

while the SS2 is the standard shear diaphragm case (Armenakas et al., 1969)

u(r, θ, z, t) = v(r, θ, z, t) = 0, σzz(r, θ, z, t) = 0, z = 0, L. (32)

The shell geometry is that of a thick shell with ro/ri = 2 and L/ro = 2, also
studied elsewhere (So and Leissa, 1997; Buchanan and Yii, 2002; Asgari and
Akhlaghi, 2011).

In the RPIM scheme, the solution is obtained for each k according to the ansatz
Eq. (23). The resulting twodimensional domain is discretized into regularly
distributed node points in r and z directions; nr × nz nodes. The choice of
RPIM parameters, as well as the number and distribution of nodes, are chosen
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from comparing the eigenfrequencies when nr = nz = 0 to the results for
homogeneous thick shells presented by So and Leissa (1997); Buchanan and Yii
(2002) for CC, FF and SS1 boundary conditions. Here the RPIM parameters
are obtained by systematically varying the parameter values for a specific node
configuration (6 × 10 nodes), from which a set of constants are chosen that
are believed to render the most accurate results. Concerning the numbers of
polynomial basis functions m in Eq. (16), values in the interval 0 ≤ m ≤ 6
are tested which seems to result in the best choice when m = 3. Hereby, the
polynomial basis functions Eq. (19) becomes

P(x) = [1 r z ]T . (33)

For the number of nodes n within the local support domain used in Eqs. (9),
this is estimated by using a fix support domain radius rs = 2dc, where dc is
the average distance between nodal points. The remaining two parameters q
and αc in Eq. (18) are chosen as q = 1.03 and αc = 2 after trying several
different combinations of similar values, compare Liu et al. (2003, 2005).

As for the number and distribution of nodes in the twodimensional domain,
the number of terms for a certain accuracy depends on the circumferential
wave number k and the mode number. Concentrating on the fundamental
modes for each k as depicted in the Figures 1-8 below, convergence results
for homogeneous CC and FF shells are presented in Tables 2 and 3 when

k = 0, 1, 2. Here the nondimensional eigenfrequency Ω = ωro
√

ρm/µm. Both
tables show that these eigenfrequencies seem to converge to the exact values,
which for CC is taken from Buchanan and Yii (2002) and for FF is from So
and Leissa (1997). The tables show the converging tendencies using relative
few nodes; using slightly more terms (notably in the r directions) also render
the correct values for CC when m = 2 and for FF when m = 1 and m = 2. It is
interesting to note that accurate results are obtained using rather few nodes,
which indicates the efficiency of the meshless method. The results given in
Tables 2–3 are obtained using up to about 150 nodes, whereas the results for
the inhomogeneous shells presented in the plots below use up to about 300
nodes.

4.1 Frequency analysis for FG shells

The influence on the eigenfrequency using bidirectional FG shells are studied
in this section. First study the lowest eigenfrequency for each circumferential
wave number k associated with the four boundary conditions. Figures 1–4 show
these eigenfrequencies for different FG constituents, that is different power law
exponents as presented in Eq. (26). Figure 1 considers the pure metal case.
All the four boundary conditions have a common eigenfrequency Ω = 1.57
for the pure torsional mode at k = 0. The lowest eigenfrequency is for FF at

10



m nr × nz Ω m nr × nz Ω m nr × nz Ω

0 3× 12 1.574 1 3× 12 1.325 2 3× 12 1.602

3× 15 1.573 3× 15 1.323 3× 15 1.600

3× 18 1.571 3× 18 1.321 3× 18 1.598

6× 12 1.570 6× 12 1.310 9× 12 1.597

6× 15 1.571 6× 15 1.308 9× 15 1.589

6× 18 1.571 6× 18 1.308 9× 18 1.591

Exact 1.571 Exact 1.308 Exact 1.594

Table 2
Convergence table for a homogeneous CC shell.

m nr × nz Ω m nr × nz Ω m nr × nz Ω

0 3× 12 1.574 1 3× 12 1.537 2 3× 12 0.919

3× 15 1.573 3× 15 1.540 3× 15 0.923

3× 18 1.571 6× 12 1.577 6× 12 0.945

6× 12 1.566 6× 15 1.580 6× 15 0.952

6× 15 1.570 9× 12 1.596 9× 12 0.964

6× 18 1.571 9× 15 1.600 9× 15 0.965

Exact 1.571 Exact 1.604 Exact 0.970

Table 3
Convergence table for a homogeneous FF shell.

k = 2 where Ω = 0.97. These results for CC, FF and SS1 are in line with
the homogenous case presented by Buchanan and Yii (2002). Corresponding
curves are presented for thin shells using approximate shell theories (Pradhan
et al., 2000; Ansari and Darvizeh, 2008) . Note that the present work has the
lowest eigenfrequency for FF among the boundary conditions for the presented
cases k ≥ 2, which is not the case for Pradhan et al. (2000). Next consider
Figs. 2 and 3 for one-directional FGM in z and r directions, respectively.
Clearly the eigenfrequencies increase as the ceramic phase influence increases.
Generally, the influence due to a variation in nr is more prominent than for
varying nz, as expected. However, this is not entirely the case for FF shells,
as the lowest eigenfrequency when k = 2 is more or less the same in both
Fig. 2 and Fig. 3, see more below. Finally Fig. 4 presents the results for a
bidirectional FGM, where the eigenfrequencies in all cases are higher than
in the previous plots. Note from Eq. (26) that the ceramic phase here clearly
dominates over the metal phase. As an example, the k = 0 case gives Ω = 3.65
while the pure ceramic case gives Ω = 3.82 for all four boundary conditions.
A common tendency in all the Figures 1–4 is that the two SS curves lie in
between the lower FF curve and the higher CC curve, except for k ≤ 1.
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It is interesting to further examine the behavior for FF shells concerning the
one-directional variation in r and z. To this end, consider Figure 5 which
shows the lowest eigenfrequency when k = 1 for different nr and nz when
nz = 0 and nr = 0, respectively. Here it is clear from the crossing of curves
that there is a transition point at around ni = 8.5 from where the power law
exponent nz influences the frequency level more prominently than nr. Such
transition points are also present for k = 0 and k = 2, not illustrated here.
As a comparison to Fig. 5, the corresponding CC case is displayed in Fig. 6
showing no crossing of curves.

To see the influence of the variation of the power law exponents, it is pos-
sible to display various plots for the four boundary conditions. As there are
similar tendencies for all boundary conditions, only the CC case is presented
here. Figure 7 shows the lowest eigenfrequency for each circumferential wave
number k when nz = 0 and varying nr. This plot clearly shows the increase
in frequency as nr increases. For each nr the k = 1 mode has the lowest
eigenfrequency; just as for homogeneous material (Buchanan and Yii, 2002).
Other power law exponents could have be chosen, but the overall behavior is
similar to the present case. Similar plots are presented using either approxi-
mate shell theories (Pradhan et al., 2000; Kadoli and Ganesan, 2006; Ansari
and Darvizeh, 2008) or three-dimensional theory (Asgari and Akhlaghi, 2011).
Note that the latter work studying FF thick shells using FEM does not dis-
play a local minimum at k = 2 (compare the present Figs. 1–4) which seems
somewhat inconsistent considering the results in table form for homogeneous
shells presented therein as well as by So and Leissa (1997); Buchanan and Yii
(2002). As a final illustration, Figure 8 presents the lowest eigenfrequency for
k = 0 in the case of bidirectional FGM. This plot clearly shows the increase
in frequency as the power law exponents increase. A similar case for FF shells
is given by Asgari and Akhlaghi (2011).

4.2 Mode shapes for FG shells

It is of interest to see how the mode shapes are influenced by the bidirectional
FG variation. Consider only the modes for k = 0 as is reported in Buchanan
and Yii (2002) for a homogeneous shell. Here the FF and SS1 boundary condi-
tions are studied for four cases: nr = 0, nz = 0; nr = 2, nz = 0; nr = 0, nz = 2,
and nr = 2, nz = 2. Figures 9–11 illustrate the eigenmodes related to the
mode shapes Ωh,2–Ωh,4 for a homogeneous shell. Here, the modes related to
the torsional mode Ωh,1 for a homogeneous shell are not illustrated due to
the deformation nature. Note that the corresponding FG shell modes for SS1
are ordered in the same fashion as the homogeneous shell. However for a FF
shell the modes for nr = 0, nz = 2 and nr = 2, nz = 2 are seen to be ordered
differently. Here the third modes are of Ωh,2 type in these cases, and illus-
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Fig. 1. First frequency Ω for each k associated with various boundary conditions;
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Fig. 2. First frequency Ω for each k associated with various boundary conditions;
nr = 0, nz = 2.

trated in 9(a). For nr = 0, nz = 2 the torsional mode has the second lowest
eigenfrequency, so the corresponding mode illustrated in 10(a) is for the lowest
eigenfrequency. For nr = 2, nz = 2 the second mode is presented in 10(a). In
each mode, the displacements are normalized so that the point originally at
(r = ri, z = 0) has the same radial displacement for the four different FG
cases.

It is clear from these plots that the FG variation has pronounced influence
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Fig. 3. First frequency Ω for each k associated with various boundary conditions;
nr = 2, nz = 0.

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

11

12

 

 

FF
CC
SS1
SS2

Ω

k

Fig. 4. First frequency Ω for each k associated with various boundary conditions;
nr = 2, nz = 2.

on the mode shapes. Generally the modes using nr = 0, nz = 0 and nr =
2, nz = 0 are of the same type as expected, where the mode shapes posses the
symmetric/antisymmetric behavior in line with Buchanan and Yii (2002). It
is also clear that the curves where there is a variation in the z direction are
similar; nr = 0, nz = 2, and nr = 2, nz = 2. In this latter case with variation in
the z direction, the mode shapes are ordered differently for FF shells compared
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Fig. 6. First CC frequency Ω for k = 1 using various ni where i = r, z.

to the nr = 0, nz = 0 and nr = 2, nz = 0 cases, as discussed above.

5 Conclusions

The paper illustrates the RPIM adopted on a thick shell using three-dimensional
equations of motion. The shell is bidirectional FG where the variation is
present in both the radial and the axial directions. Numerical results on eigen-
frequencies are presented using four different boundary conditions, and results
for eigenmodes are illustrated for two different boundary conditions. The ef-
fects from variation in radial and/or axial directions are illustrated in these
figures.

This work shows that the RPIM is an efficient alternative to FEM when solving
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dynamical shell problems. The virtue of this method is the absence of a mesh,
the ease of handling both the boundary conditions and the coding procedure
as a whole, resulting in a fast algorithm. The tuning of the parameters present
in RPIM are obtained by comparing the results for a homogeneous shell to
results given in the literature.

Possible applications of the present work concerns how to distribute the mate-
rial constituents in two directions that more efficiently fulfil engineering pur-
poses. Hereby it is possible to design structures that resist high-temperature
environment in a structured manner. Future work includes optimization prob-
lems on choosing the material configuration for a specific purpose, e.g. to
control eigenfrequencies.
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