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Abstract 8 

The response characteristics of large-scale structures subjected to impact loading can in principle 9 

be determined by scaled experiments.  Unfortunately, scaling suffers from scale effects and for 10 

impact mechanics, the non-scalability of strain rate and strain hardening can diminish the 11 

effectiveness of scaled trials.  To resolve this difficulty, a new scaling method has recently 12 

appeared in the open literature called finite similitude.  The theory is founded on the metaphysical 13 

concept of space scaling, where the idea is that by expanding or contracting space, changes in the 14 

governing mechanics can be assessed. 15 

In this paper the finite-similitude theory is further developed, where it is demonstrated how the 16 

constraints imposed by dimensional analysis can be broken.  A new form of similarity is introduced 17 

but at the cost of requiring two scaled experiments at distinct scales.  It is shown however, how 18 

the theory is able to combine the information from the two scaled trials to predict outcomes that 19 

can be markedly superior to what can be achieved with experiments at a single scale.  All scale 20 

dependencies are accounted by the theory and consequently the new formulation attempts to 21 

capture scale effects, so provides a more realistic approach to scaled experimentation. 22 

Unlike dimensional analysis, the new first-order finite similitude theory can simultaneously target 23 

two independent physical properties of common dimension (e.g. initial-yield stress and linear 24 

strain hardening).  The advantage offered by this feature is demonstrated analytically and 25 

numerically in the paper with a focus on axisymmetrical tube buckling and energy absorption.  The 26 

analytical model serves to expound the theory and the numerical highlights its capabilities and the 27 

kinds of accuracy achievable with the new approach. 28 

 29 
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 31 



1. Introduction 32 

Despite the significant advances in theoretical and numerical modelling, especially in recent years, 33 

it is required that huge structures such as trains, ships and aeroplanes are tested experimentally at 34 

least in limited numbers [1]. It is well appreciated that testing of such huge structures can be 35 

expensive and time consuming.  Undoubtedly, advanced numerical methods and theoretical 36 

analysis have led to significant reductions in the number of required full-scale tests [1].  Despite 37 

this reduction however, large-scale testing poses significant challenges being constrained by 38 

practical limitations and the need to recover critical information useful to numerical and theoretical 39 

models.  Disparities between the model outputs and experimental response are a common feature 40 

arising from physical uncertainties and equipment limitations but also due to simplifications made 41 

in numerical simulation [2].  Scaled experimentation offers an alternative approach that has the 42 

advantage of being relatively cheap and can often be performed under laboratory conditions.  43 

However, it is recognised that one of the principal obstacles to scaled experimentation is scale 44 

effects, which can be so pronounced to make a scaled trial appear almost worthless.  Scale effects 45 

are those changes in behaviour that take place with scale and are present in all but the simplest of 46 

scaled experiments. 47 

The most well-known method for scaling of impact processes is replica scaling [3-5], which is 48 

founded on dimensional analysis.  This method is restricted to the use of identical materials for 49 

full-scale and small-scale tests, which leads to deviations in behaviour due to scale effects linked 50 

to the non-scalability of strain rate and consequently leads to what is known as distorted scaled 51 

models [3-5].  In an attempt to correct for the non-scalability of strain rate effects, a new method 52 

based on the new set of dimensionless numbers (i.e. impact mass, initial impact velocity and 53 

dynamic yielding stress) has been developed [1, 6-8].  This approach, which is known as non-54 

direct similitude, involves applying corrections to the impact velocity and impact mass.  As 55 

recorded in refs. [1] and [6], the response characteristics of a full-scale model made of a perfectly-56 

plastic material were predicted with a good accuracy with this approach.  Also, the response 57 

behaviour of axially-impacted cylindrical shells manufactured from a perfectly-plastic material 58 

was predicted to good accuracy using small-scale models, again by correcting the initial impact 59 

velocity.  A requirement of the approach however is knowledge of the strain-rate history involved 60 

during the impact process, which is needed for the calculation of correction factors; this is a clear 61 

impediment [1], [6].  A similar concern arises with the method presented in ref. [7], where the 62 



mean value for strain rate must be known in advance in order to implement the method.  The 63 

difficulty here is that knowing this information can be impossible or at least difficult to determine, 64 

especially if complicated structures and processes are involved.  A method was presented in ref. 65 

[8] in which the velocity correction factor was obtained as a function of the dimensional scaling 66 

factor and the exponent in the Norton-Hoff equation.  Although this method is restricted to a 67 

particular constitutive equation (i.e. the Norton-Hoff constitutive law), an exact match for rigid, 68 

perfectly-plastic case studies was obtained.  Also, recently a new technique was proposed by Wei 69 

and Hu [9] in which apart from adjusting the impact conditions, additional mass was added to 70 

components of the model to balance the strain rate effects. 71 

The methods presented in refs. [1, 4-9] are all based on dimensional analysis and are restricted to 72 

using identical materials for full-scale and small-scale models.  However, “identical materials” 73 

when used in what is supposedly pure dimensional scaling can have different material properties 74 

[10] at full- and small-scale experiments.  An example of this is steel sheets of 0.25 and 1 mm  75 

thicknesses showing substantial differences in their true stress-strain curves [10].  Additionally, it 76 

is often necessary to use completely different materials in the small-scale experiments due to 77 

different reasons such as manufacturing, costs or experimental restrictions [11].  Thus, it is 78 

necessary for developed-scaling theories to be able to account for different material properties 79 

pertinent to impact mechanics, which includes density, initial-yield stress, and hardening and 80 

strain-rate sensitivity.  Despite this requirement, only a few studies have been conducted in the 81 

area of impact mechanics that account for different materials and their property differences [11-82 

15].  The study presented in refs. [11] and [14] considered different material properties between 83 

the full and small-scale models.  Attempts were made to compensate for the differences in density, 84 

initial-yield stress and hardening and strain-rate sensitivity by changes in initial conditions such as 85 

mass and velocity of impactor.  However, these changes proved to be insufficient to return good 86 

results since hardening and strain-rate effects were not captured with sufficient accuracy.  Best 87 

results were returned in refs. [11, 14] for experimental tests on circular plates in which the response 88 

behaviour of full-scale plate was predicted with good accuracy using small-scale plates made of 89 

same and different materials [15].  The principal difficulty with all the methods discussed thus far 90 

is that dimensional analysis provides the underpinning theory, which itself is founded on an 91 

invariance principle, i.e. dimensionless governing equations do not change with scale.  This can 92 

be true in the case of simple experiments, but impact studies are not simple and consequently, 93 



distorted models are predominantly the case.  This means that ad hoc fixes are necessary to 94 

accommodate the fact that dimensionless equations predominantly change in realistic impact 95 

studies.  Such ad-hoc interventions rarely transfer between different impact scenarios and it is clear 96 

that a new direction is needed.  The authors contend that a theory called high-order finite similitude 97 

presented in this paper is the solution to this problem. 98 

The first application of the finite-similitude theory to impact processes was presented by Sadeghi 99 

et al. [16] using a version of the theory that is now termed zeroth-order finite similitude [17] in 100 

preparation for what is to follow.  In reference [16] the response of a full-scale model was predicted 101 

with good accuracy using small-scale models made of same and different materials by capturing 102 

the different material properties including density, initial-yield stress, strain hardening and strain-103 

rate effects.  Also, a method was presented by Sadeghi et al. [18] based on the zeroth-order finite 104 

similitude theory [17] for scaling of thermo-mechanical impact processes in which damage/failure 105 

for first time was scaled.  The presented method for scaling of impact processes was verified in 106 

ref. [2] experimentally by conducting experiments on axially impacted tubes in which it was 107 

revealed that scaled experimentation can provide better predictions compared with sophisticated 108 

numerical tools such as Abaqus. 109 

Zeroth-order finite similitude and dimensional analysis have one thing in common, which is that 110 

both involve proportional physical fields; assumed for dimensional analysis ab initio and for finite 111 

similitude arising as a consequence of the assumption that projected transport equations do not 112 

change with scale (more on this in subsequent sections).  This restriction manifests practically in 113 

zeroth-order similitude theory [16, 18], being unable to simultaneously fix two different physical 114 

properties having the same units by means of two different degrees of freedom.  The simultaneous 115 

fixing of initial-yield stress and hardening for example is an open problem.  In the presented paper 116 

the high-order finite similitude theory is introduced, and the first-order theory is applied as a first 117 

step to gauge what improvements can be gained.  The first-order theory uses two scaled 118 

experiments at distinct scales, and in many respects the reason for adding one or more scaled 119 

experiment is readily appreciated.  Scaled experiments capture certain information about the full-120 

scale process and should scale effects be present, then changes in behaviour will be visible at 121 

different scales.  In order to make use of the different behaviours that appear with scale, it is 122 

necessary to have a theory that can combine the information.  Patently, dimensional analysis 123 

cannot do this, as by design, it assumes no change is taking place. 124 



The theoretical background of the first order finite similitude theory is presented in Section 2. The 125 

foundation of the finite-similitude approach is the metaphysical concept of space scaling, which is 126 

re-presented in Section 2.1.  Note that a “metaphysical” process is defined here to be a process that 127 

cannot be realised practically but can nonetheless be imagined and mathematically defined. By 128 

means of this imagined space transformation trial-space impact mechanics is projected onto the 129 

full-scale physical space.  This step is critical as it reveals all scale dependencies that occur in 130 

impact mechanics and the issue is examined in Section 2.2.  The approach offers great flexibility 131 

as scaling effectively reduces to discovering what the space dependencies are; the approach 132 

adopted to discover these is the application of global-scale invariances as presented in Section 2.3.  133 

As discussed in Section 2.4, a particular choice of invariance provides the first-order finite 134 

similitude theory and reveals field identities that connect behaviours across the trial experiments 135 

and the physical process under scrutiny.  The practical implementation of the approach is examined 136 

in Section 3, where a procedure for setting the scaling parameters is presented.  The testing of the 137 

method is undertaken in Section 4 using numerical and analytical approaches for the analysis of 138 

axially-impacted tubes.  The paper concludes with a list of conclusions. 139 

2. Theoretical background 140 

Introduced in this section is the theoretical foundation to the first-order finite-similitude theory 141 

leading to a usable scaling method for impact processes.  A brief recap of the idea of space scaling 142 

and control-volume kinematics is provided in the first subsection.  This leads to the critically 143 

important concept of projected impact mechanics in transport form, where scaled behaviour is 144 

projected to the full scale.  The final subsection describes how the first-order theory provides field 145 

identities for use in practical testing. 146 

2.1. A brief recap on finite-similitude theory 147 

The basic philosophy behind the finite-similitude theory is described in references [16-18] but it 148 

is constructive to briefly recap the ideas here before extending the theory in the field of impact 149 

mechanics.  The theory is founded on the concept of metaphysical-space scaling, which is a 150 

physically intuitive approach, where the investigated structure tied to the space is affected (i.e. is 151 

contracted or expanded) by the contraction or expansion of space.  In impact mechanics the starting 152 

point of any analysis is the identification of inertial frames for the physical and trial spaces.  The 153 



full-scale process resides in the physical space and the scaled experiment sits in the trial space and 154 

the starting point of any analysis is the specification of inertial coordinate systems denoted by tsx  155 

and psx , where the subscripts “ts” and “ps” refer to trial and physical space, respectively.  For the 156 

sake of simplicity, it is assumed here that the coordinate frames (linked to these systems) are 157 

orthonormal.  Two temporal measures are also involved denoted to be 
pst  and tst , which are taken 158 

to be absolute to be consistent with the Newtonian mechanics applied in this study.  It is assumed 159 

further that 
pst  and tst  are related by the differential relationship ts psdt gdt= , where g  is a positive 160 

parameter. 161 

 162 

Figure 1. The effect the value of   has on the distortion of space. 163 

Metaphysical scaling is mathematically defined by a temporally invariant affine map, which in 164 

differential terms takes the form ts psd F d= x x  (i.e. 
i i j

ts j psdx F dx= ), where the matrix F  is both 165 

spatially and temporally invariant in view of the focus on scaled experimentation.  In this study, 166 

the focus is on isotropic scaling, where F  adopts a comparatively simple form, i.e. F I= , where 167 

I  is a unit matrix and   is a positive parameter.  The effect   has on the physical space is 168 

illustrated in Fig. 1, with contraction indicated by 0 1   and no scaling if 1 =  and expansion 169 

with 1  . 170 



 171 

Figure 2. The kinematics of synchronous control volumes *

ts  and 
*

ps . 172 

As described in references [16-18] the finite similitude theory is founded on physics described on 173 

synchronised moving controls.  The motion of trial-space control volume *

ts  can be described 174 

mathematically using a velocity field *

tsv  and by contrasting its location to a reference control 175 

volume *ref

ts .  The basic idea of synchronised control volume motion in the physical and trial 176 

spaces is presented pictorially in Fig. 2.   The coordinate point *

tsx  is assumed to move with control 177 

volume *

ts  with velocity *

tsv  and in view of the reference control volume *ref

ts  the following 178 

identity applies: 179 



* * *
*

*

ts

ts ts
ts

ts ts

D

D t t


= =



x x
v



                 (1) 180 

where the derivative 
* *

tsD D t  is used here to signify a temporal derivative with the reference 181 

coordinate ts  held constant and a similar apparatus applies in the physical space as illustrated in 182 

Fig. 2. 183 

The control volume being a region of space is affected by scaling and 
* *

ts psd d=x x  must apply and 184 

since ts psdt gdt=  it is evident that synchronous control volumes (i.e. *

ts  and 
*

ps  in Fig. 2) satisfy 185 

the velocity relationship 
* 1 *

ts psg −=v v . 186 

2.2. Projected impact mechanics in transport form 187 

The transport equations for a moving control volume important to impact mechanics for finite 188 

similitude are those concerned with volume, continuity, momentum and movement and take the 189 

form 190 

* *

*
* * *

*
0

ts ts

ts ts ts ts

ts

D
d d

D t
 

 −   =  v n               (2a) 191 

( )
* *

*
* * *

*
0

ts ts

ts ts ts ts ts ts ts
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D
d d

D t
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( )
* * * *

*
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0
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ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts
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D
d d d d

D t
  

   

 + −   −   −  =   v v v v n n b        (2c) 193 

( )
* * *

*
* * * *

*
0

ts ts ts

ts ts ts ts ts ts ts ts ts ts ts ts

ts

D
d d d

D t
  

  

 + −   −  =  u u v v n v          (2d) 194 

where ts  is mass density, tsv  is material velocity, tsu  is material displacement, ts  is Cauchy 195 

stress, tsn  is an outward pointing unit normal, tsb  is specific-body force (i.e. force per unit mass) 196 

and *

ts  is the boundary of control volume *

ts . 197 

The critical equation in impact mechanics is Eq. (2c) but finite similitude involves other 198 

considerations that necessitate the involvement of additional equations.  In particular, Eq. (2a) is 199 

never present in impact studies as it has no field associated with it but is included here to enforce 200 



the condition for synchronous control volume motion (i.e. 
* 1 *

ts psg −=v v ).  Similarly, the continuity 201 

Eq. (2b) is seldom invoked in impact mechanics as density is typically set but is required 202 

nevertheless in physical modelling to account for changes in material.  Note that Eq. (2d) for 203 

movement was first introduced in reference [19] in an attempt to make transport equations more 204 

pertinent to solid mechanics since displacement is critical in the description of structural 205 

deformation. 206 

With the governing equations and apparatus now in place for space distortion, the most critical 207 

step underpinning the finite-similitude theory is now invoked.  The projection of Eqs. (2) onto the 208 

physical space is critical as it immediately exposes all scale dependencies.  The mathematical 209 

process involves the substitution of 
* 3 *

ts psd d =  , 
* 2 *

ts ts ps psd d = n n , ts psdt gdt=  into Eqs. 210 

(2) along with multiplication throughout by g  and non-zero scaling parameters 1

0 , 0

 , 0

v  and 211 

0

u , respectively.  These operations provide the following four important equations: 212 

( )
* *

*
1 1 1 3 * 1 3 * *

0 0 0 0*
0

ps ps

ps ps ps ps

ps

D
T d d

D t
     

 

=  −   =  v n           (3a) 213 

( ) ( )
* *

*
3 * 3 * *

0 0 0 0*
0

ps ps

ts ps ts ps ps ps ps

ps

D
T d d

D t

          
 

=  + −   =  V v n          (3b) 214 

( ) ( ) ( ) ( )
* *

*
1 3 * 1 3 * *

0 0 0 0*

ts ps

v v v v

ts ps ts ts ps ts ps ps ps

ps

D
T g d g d

D t
         − −

 

=  + −   V V V v n  215 

* *

2 * 3 *

0 0 0

ps ps

v v

ts ps ps ts ts psg d g d    
 

−   −  = n b        (3c) 216 

( ) ( ) ( ) ( )
* *

*
3 * 3 * *

0 0 0 0*

ps ts

u u u u

ts ps ps ts ps ps ps ps ps

ps

D
T d d

D t
         

 

=  + −   U U V v n  217 

( )
*

3 *

0 0

ps

u

ts ps psd   


−  = V          (3d) 218 

where 
1

ps tsg −=V v  and 
1

ps ts −=U u . 219 

Eqs. (3) capture all scale dependencies that feature in scaled-impact mechanics, with the 220 

appearance of explicit geometrical measures (e.g. 3  and 2 ) but also other hidden dependencies 221 



such as the fields ( )ps V  and ( )ps U .  The scaling problem has effectively been transformed 222 

into one where the objective is now to discover the behaviour of the hidden-field dependencies.  223 

The theory embraces the presence of scale effects rather than simply ignoring them as is done in 224 

dimensional analysis and zeroth-order finite similitude (see refs. [16-18]), which is equivalent to 225 

stating that Eqs. (3) are independent of  .  There exist two possible options for revealing hidden 226 

dependencies, with one requiring additional information (i.e. boundary conditions, size effects 227 

etc.), and the other is the application of a global-scale invariance.  This latter approach is the focus 228 

here as is particularly suited to physical modelling, where the idea is to select a physical invariance 229 

that facilitates the design of physical-trial experiments. 230 

2.3. Scale invariances and the first-order theory 231 

Observe that Eqs. (3) are of the form 0 0 0T  = , with   set to 1 ,  , v  and u .  As mentioned 232 

above a particularly obvious  –invariance (and one that has been applied repeatedly for over 100 233 

years) is that ( )0 0T    does not depend on  .  Written in mathematical terms the requirement is 234 

that the identity 235 

( )0 0 0
d

T
d

 


                  (4) 236 

applies, where the equality sign “” signifies that the derivative is identically zero. 237 

Zeroth-order finite similitude refers to a system of transport equations that satisfies this particular 238 

identity and details on its application can be found in references [2, 16-18, 20-22].  The derivation 239 

of the identities 3

0ps ts

   = , 
1

0 0

v g   −=  and 1

0 0

u   −=  can be found in these references, 240 

so not discussed further here, but nevertheless are taken forward to the next level of finite 241 

similitude called first-order finite similitude.  Scaling parameters ( )0

   have the function of 242 

attempting to eliminate   from ( )0 0 0T   =  in order for Eq. (4) to apply.  This observation 243 

suggests that the definition 244 

( )1 0 0

d
T T

d

  


=                  (5) 245 



should be scaled with new set of scaling parameters ( )1

   (satisfying ( )1 1 1 = ) and consider 246 

then the identity 247 

( ) ( )2 1 1 1 0 0 0
d d d

T T T
d d d

       
  

 
= =  

 
             (6) 248 

which is the scaled invariance for first-order finite similitude and note the route to higher forms 249 

on considering ( )2 2 0T   =  and its derivative with respect to  . 250 

Note that zeroth-order finite similitude with this notation is simply 1 0T   and that Eq. (6) is 251 

automatically satisfied if zeroth-order conditions are met; clearly this is a desirable feature.  Also 252 

expanding the derivative on the right-hand side of Eq. (6) gives 253 

( ) ( ) ( )
2

1 1 1
1 1 1 1 0 0 1 0 02

0
d dT dd d d

T T T T
d d d d d d

  
         

    
     

= + = +           (7) 254 

which is an expansion in terms of the derivatives of 0 0T  , which can represent (by means of 255 

osculation), any other linear combination of the derivatives of 0 0T   up to the same order at any 256 

arbitrary 1 = . 257 

This feature is sufficient for scaling purposes and confirms that there is little point in seeking 258 

alternative identities involving derivatives of 0 0T   to replace Eq. (6).  Moreover, the form of Eq. 259 

(6) can be readily integrated using divided differences, which provides added justification for its 260 

form and this aspect is discussed in the following section.  Prior to this however it is convenient to 261 

substitute the zeroth-order constraints 3

0ps ts

   = , 
1

0 0

v g   −=  and 1

0 0

u   −=  into Eqs. (3) 262 

to obtain 263 
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*
* * *
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D
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* * 0

ps ps
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*
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u u
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D
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D t
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ps
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where 2

0

v

ps tsg =  , 3 2 1

0

v

ts ts ts tsg g    −= =B b b  and where it is noted that Eq. (3a) satisfies 268 

Eq. (4) on setting 1 3

0  −=  and consequently plays no further role in first-order theory. 269 

Note that in Eqs. (3) the zeroth-order term ( )*

ps ps ps− v v n  is substituted for ( )*

ps ps ps− V v n  in the 270 

momentum and movement equations to avoid the necessity to consider quadratic forms of 271 

similitude but also to reflect the fact that the term ( )ps ps psV V n  tends to be small in solid 272 

mechanics. 273 

2.4. First-order field identities  274 

Eq. (6) can be solved numerically by application of divided differences and to ensure an exact 275 

representation a mean-value theorem for integration is applied to reveal 276 

( ) ( )
( ) ( )0 0 1 0 0 21 1

1 1 2 1 2

1 2
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T T
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−


−

T T
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where 1

2 2 1     and 0

1 1 0     with 2  and 1  being scales for trial-space experimentation 279 

and 0 1 =  being at full scale as depicted in Fig. 3. 280 

 281 

Figure 3. Thin cylindrical tubes in the physical and trial spaces. 282 



In view of Eq. (6) the next divided difference gives zero and consequently 283 

( ) ( )0 1

1 1 1 1 1 2T T       , which on substitution of Eqs. (9) provides after some manipulation 284 

( ) ( ) ( ) ( )( )0 0 0 0 0 1 1 0 0 1 0 0 2R                + −T T T T           (10) 285 

where 286 
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1 21 1
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  −
 =  
  −  

              (11) 287 

with Eq. (10) providing the sought identity for relating trial-space experiments to the full-scale 288 

structure. 289 

Observe here that 1R
 takes on the role of a parameter due to indeterminacy of 1

  and application 290 

of Eq. (10) to Eqs. (8) provides the field identities: 291 

( ) ( ) ( )( )1 1 1 2ps ps ps psR  = + −v V V V           (12a) 292 

( ) ( ) ( )( )1 1 1 2

v

ps ps ps psR  + −v =V V V           (12b) 293 

( ) ( ) ( )( )1 1 1 2

v

ps ps ps psR  + − =              (12c) 294 

( ) ( ) ( )( )1 1 1 2

v

ps ps ps psR  + −b = B B B           (12d) 295 

( ) ( ) ( )( )1 1 1 2

u

ps ps ps psR  + −u = U U U           (12e) 296 

( ) ( ) ( )( )1 1 1 2

u

ps ps ps psR  + −v =V V V            (12f) 297 

where to arrive at a consistent velocity expression it is required that 1 1 1 1

v uR R R R= = = , which is 298 

achieved on setting 1 1 1

v u  = = , and where 
1

ps tsg −=V v , 
1

ps ts −=U u , 2

0

v

ps tsg =   and 299 

2 1

ts tsg  −=B b . 300 

The fields returned by the first-order finite similitude theory are rather elegant in their simplicity 301 

as the condition 1 1 1

v uR R R = =  provides a physically-intuitive solution to Eq. (6).  It essentially 302 

indicates that the experiments as described by transport Eqs. (8) have proportional differences.  303 

The theory provides the fields in Eqs. (12) whose differences are proportional and all that remains 304 

is the details of its application.  The basic idea is depicted in Fig. 4, where the projection and 305 



combination of real trial-space experiments is illustrated.  An important feature that is worth noting 306 

is that finite-similitude theory does not provide constitutive equations and all the fields required in 307 

the physical space are given or can be derived from those in Eqs. (12). However, constitutive 308 

equations applied in the physical space can be used to set the scaling parameters and this aspect is 309 

discussed in the next section. 310 

3. Practical implementation procedure for impact processes (method) 311 

The high loading rate impact processes are typically described using constitutive equations like 312 

Cowper-Symonds and Johnson-Cook, which are not limited to impact processes. In the physical 313 

space, the Cowper-Symonds and Johnson-Cook constitutive equations can be presented 314 

respectively as [2, 16-18]: 315 
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where dyn

ps  is dynamic yield stress, 
stat

ps  and psA  are initial-yield stress, 
p

ps  is plastic strain, ps  316 

and 
0

ps  are respectively strain rate and reference strain rate and psD , psq , psB , psn  and psC  are 317 

determined experimentally.  318 



 319 

Figure 4. The combination of projected real experiments to form a virtual model. 320 

It is apparent from Eqs. (13) and (14) that the Johnson-Cook constitutive equation accounts for the 321 

effects of both strain rate and strain hardening on the yield stress, so is more general than the 322 

Cowper-Symonds constitutive equation, which only takes into account the strain-rate effect on the 323 

yield stress.  324 

In the trial studies that follow the dimensional scaling parameters 1  and 2 , are initially set, 325 

although the effect of different choices are investigated.  Recall the zeroth-order condition 326 

3

0ps ts

   =  and recognising that the correct representation of inertial effects in impact 327 

processes is of critical importance [2, 11, 16, 18] leads to the following: 328 
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=  (15b) 

where 1ts  and 2ts  are the material densities applied in the respective trial spaces. 329 

Zeroth-order conditions are also applied to determine the striking masses in the trial spaces and 330 

with 01

  and 02

  set by Eqs. (15) these are set by: 331 

1
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=  (16a) 
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where psM , 1tsM  and 2tsM  respectively represent the striking masses of full-scale model and 332 

trial-models 1 and 2.  In physical terms Eqs. (16a) and (16b) are attempting to compensate for the 333 

differences in mass of the full-scale and trial models as a consequence of the choice made in Eqs. 334 

(15), which is achieved by correcting the trial-striking masses. 335 

The next step in setting the scaling parameter is to focus on initial-yield stress and strain hardening.  336 

The targeting of these two features of the constitutive curve ( ),dyn p

ps ps ps    whilst limited to two 337 

degrees of freedom (i.e. 1g  and 2g ) is achieved by defining two measures, which are: 338 
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where psY  and psH  represent mean values of initial-yield and strain hardening. 339 

To show how these measures are applied consider first the first-order identity for stress Eq. (12c) 340 

for a uniaxial, which is 341 

( )2 2 2

01 1 1 1 1 01 1 1 1 02 2 2 2ps ts ts tsg R g g           = + −  (18) 

which on multiplication throughout by p

psd  and psd , and on application of the following 342 

approximations 343 
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where integration between the limits defined in Eqs. (17) gives 345 

( )2 2 2

01 1 1 1 1 01 1 1 1 02 2 2 2ps ts ts tsH g H R g H g H       = + −  (21a) 

( )2 2 2

01 1 1 1 1 01 1 1 1 02 2 2 2ps ts ts tsY g Y R g Y g Y       = + −  (21b) 

and in order to keep things reasonably simple the following settings are applied: 346 

max max max

1 1 2 2ps ts tsg g  = = , max max max

1 2

p p p

ps ts ts  = =  with max 1ps =  and max 10 msps =  to cover the 347 

maximum values of plastic strain and strain rate that are likely to take place in a high loading rate 348 

impact process [16, 23].   349 

Note that Eqs. (21) provide a system of two equations and three unknowns but in this study 1R  is 350 

to be set over a range of values in order to examine its effect on the predictions.  Not all values of 351 

1R  lead to reasonable values of 1g  and 2g , however it is shown in the following section that 352 

although 1R  affects accuracy it almost always provides more accurate results than those obtained 353 

with the zeroth-order method presented in Refs. [2, 16, 18].  Finally by specifying the values of 354 

1g  and 2g , the impact velocities of the trial models are determined using zeroth-order identities: 355 
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which physically means that differences between initial-yield stress, strain hardening and strain 356 

rate of full-scale and trial models are compensated by correcting the initial impact velocities of the 357 

trial models. Note that elastic moduli are not targeted in the employed procedure, which is a 358 

deficiency if elastic behaviour is significant.  359 

Despite the complexity involved in deriving of the scaling method applicable for high loading rate 360 

processes, its application is relatively straightforward as detailed in the following steps: 361 

1. Specify the geometrical and material properties, boundary and initial conditions of (mass 362 

and velocity of striking mass) full-scale model; 363 

2. Specify the material properties and boundary conditions (boundary conditions are same as 364 

the boundary conditions of the full-scale model) of trial models; 365 

3. Calculate the geometrical properties of trial models by determining the dimensional scaling 366 

factors (i.e. 1  and 2 ); also, calculate the density scaling factors (i.e. 01

  and 02

 ) and 367 

the masses of trial models (i.e. 1tsM  and 2tsM ) using Eqs. (15)-(16); 368 

4. Calculate the time scaling parameters (i.e. 1g  and 2g ) using Eqs. (20)-(21) and setting the 369 

1R  to be equal to any value; then calculate the impact velocities of the trial models using 370 

Eqs. (22); 371 

5. Conduct experimental tests on the trial models and use Eqs. (12) to predict the response 372 

characteristics of the full-scale model. 373 

The important relationships applied in the practical investigation provided in the next section are: 374 

( )2 1 2 1 2 1

1 1 201 1 1 1 01 1 1 02 2 2ps ts ts tsP g P R g P g P       − − −= + −          (23a)  375 

1

1 1ps tst g t−=          (23b) 376 

1

2 2ps tst g t−=          (23c) 377 

( )1 1 1

1 1 21 1 1 2ps ts ts tsu u R u u  − − −= + −          (23d) 378 



where P  is force, and where on setting 1R  equal to zero, zeroth-order relationships are returned.  379 

4. Numerical experiments: Results and discussion 380 

In this section, the presented method for scaling of high loading rate processes is tested 381 

theoretically and numerically.  The tubes impacted axially are selected as case studies since the 382 

impact behaviour of tubes involving various deformation mechanisms [2, 16, 24-28] provide a 383 

good challenge for testing of the proposed method.  Thin-walled tubes have been the subject of 384 

many researches over the last two decades [27] and are recognised to be one of the most important 385 

energy absorption systems [2, 16, 24-28].  This stems for a few things such as lightness, high 386 

energy absorption capacity, a long crushing length and high energy absorption to weight ratio [28].  387 

Numerical results obtained by the finite element software LS-Dyna are compared and validated 388 

with reported results in Refs. [2, 25].  LS-Dyna is a commercial software package that is 389 

particularly well suited to the simulation of nonlinear and transient dynamic analysis [29].  The 390 

presented scaling method is tested in case study I using an analytical relationship for calculating 391 

peak loads of axially impacted tubes in which the strain-rate effect is taken into account using 392 

Cowper-Symonds constitutive equation.  Additionally, in case study II, the theory is tested 393 

numerically by simulation of axially impacted tubes in LS-Dyna in which the strain-rate effect is 394 

again accounted for using the Cowper-Symonds constitutive equation.  Finally, in case study III, 395 

the Johnson-Cook constitutive equation is used for investigating both strain-rate and strain-396 

hardening effects.  Note that case studies I and II provide evidence that the success of the scaling 397 

methodology is not dependent on the solution procedure selected.  Similarly, case studies II and 398 

III provide evidence that success is not dependent on the constitutive laws adopted. 399 



 400 

Figure 5. A general figure of axially impacted tube simulated by the   401 

LS-Dyna finite element software.  402 

The numerical simulations of axially impacted tubes are conducted using the LS-Dyna finite 403 

element software [29].  One-point integration 8-node solid elements of 0.50 mm  side length 404 

obtained by a convergence study are used (otherwise the mesh size is specified) in all of 405 

simulations in which the mesh size is also scaled according to the dimensional scaling factors.  The 406 

stationary tube impacted by a striking mass is simulated using the Lagrangian control-volume 407 

method with the clamped un-impacted end restricted in all directions except the z -direction at the 408 

impacted end [25].  In order to model materials, 024-PIECEWISE_LINEAR_PLASTICITY is 409 

used when the strain-rate effect is considered using the Cowper-Symonds constitutive equation 410 

and 098-SIMPLIFIED_JOHNSON_COOK is used, where the strain-rate and strain-hardening 411 

effects are taken into account using the Johnson-Cook constitutive equation.  The Flanagan-412 

Belytschko stiffness form (i.e. IHQ) with hourglass coefficient of 0.03 (i.e. QM=0.03), which is 413 

suitable for impact problems, is used [29].  Moreover, the 414 

AUTOMATIC_SURFACE_TO_SURFACE contact model is applied in the simulation procedure 415 

and the AUTOMATIC_SINGLE_SURFACE contact model is used to create a contact between 416 

the different parts of tube with each other.  The static and dynamic friction coefficients are 417 

respectively set to be equal to 0.30 and 0.25 in all simulations.  A general depiction of axially 418 

impacted tube simulated by the LS-Dyna finite element software is shown in Fig. 5. 419 



4.1. Validation of numerical results 420 

Considered is a tube with the thickness, outer diameter and length equal to 2.10 mm , 30.24 mm  421 

and 80 mm , respectively.  The stationary tube made of a strain rate insensitive aluminium alloy 422 

with properties tabulated at Table 1 is impacted by a striking mass having a mass and velocity 423 

equating to 0.26 kg  and 57 mm ms , respectively.  The experimental shortening of the tube is 424 

reported equal to 13.80 mm  [25] and it is numerically predicted to be equal to 11.70 mm ; thus 425 

there is an approximately acceptable agreement between these values (the error percentage is 426 

15.22%).  Furthermore, the experimental and numerical buckling shapes are compared with each 427 

other according to Fig. 6.  It is revealed that both buckling shapes respond to the axial impact by 428 

forming a dominant fold at the impacted end.  Illustrated by Fig. 6, the experimental and numerical 429 

buckling shapes are generally matched.  The source of the error observed here between the 430 

experimental and numerical result is primarily due to uncertainties in material properties, as a 431 

precise material study was not conducted in Ref. [25].   432 

To demonstrate explicitly that improved accuracy is possible with precise material properties 433 

consider a stationary tube made out of steel material having thickness, inner diameter and length 434 

equal to 1 mm , 26.60 mm  and 60 mm , respectively.  The steel tube is axially impacted by a 435 

striking mass having respectively the mass and initial velocity equal to 1 kg  and 40 mm ms  [2].  436 

An element size of 0.25 mm  is selected as this leads to converged results independent of further 437 

reduction in element size [2].   The material properties obtained from an experimental study  are:  438 

Poisson ratio, density, elastic modulus, A , B , n , C  and 0  respectively equal to 0.30, 439 

37864 kg m , 200 GPa , 291.96 MPa , 358.25 MPa , 3304.98 10− , 3135.09 10−  and 440 

58.62 10  1 ms−  [2].  The reported material properties were determined according to Ref. [2] by 441 

conducting static tensile tests using static tensile testing machine and high rate tests using a split 442 

Hopkinson pressure bar.  The experimental shortening reported equal to 15.20 mm  [2] is predicted 443 

equal to 15.40 mm  using the performed numerical simulation, which shows an error equal to 444 

1.32%.  Experimental and numerical buckling shapes depicted in Fig. 7 have good agreement with 445 

each other.  It is revealed that both tubes have a very mild fold at the impacted end, and they also 446 

have two folds at the distal end; one of them is a fully formed wrinkle whilst the other is partially 447 

formed.  Furthermore, the axial force versus time curves at the distal end of the experimentally 448 

and numerically impacted tube are provided in Fig. 7 showing an acceptable agreement between 449 



them.  As illustrated in this figure, the experimental peak load of 73.29 kN  is numerically 450 

predicted equal to 81.02 kN  showing a discrepancy of 10.55%.     451 

Experimental [25] Numerical 

  
Figure 6. A comparison between the experimental and numerical buckling shapes. 452 

 453 

Experimental [2] Numerical 

  
(a) Buckling shapes 454 



 455 

(b) Axial force versus time curves 456 

Figure 7. A comparison between the experimental [2] and numerical buckling shapes and axial 457 

force versus time curves. 458 

4.2. Case Study I: Analytical relation (Cowper-Symonds constitutive equation) 459 

In this section, the first-order finite similitude theory is demonstrated by means of an analytical 460 

example in which the peak loads of axially impacted tubes are calculated.  Firstly, the peak load 461 

of axially impacted tubes made of strain rate insensitive materials is predicted. Secondly, the peak 462 

load of axially impacted tubes made of strain rate sensitive materials are anticipated.  463 

4.2.1. Case Study I: Analytical relation (strain rate insensitive) 464 

The peak load of a tube subjected to an axial impact can be calculated using an analytical 465 

relationship derived based on stress wave propagation, and it is presented in [30-31] as: 466 
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where PeakP , R , H , 0 , 0v ,   and hE  respectively represent the peak load, mean radius, 467 

thickness, initial-yield stress, initial velocity, density and linear strain hardening.  468 



In the following, the presented method based on the first-order finite similitude theory is tested 469 

using the analytical relationship (i.e. Eq. (24)).  Consider the full-scale and virtual models (see Fig. 470 

4) with properties listed at Tables 2 and 3.  Also, the material properties of the full-scale and virtual 471 

models are tabulated according to Table 1. It should be emphasized that the presented materials 472 

according to Table 1 are inherently strain-rate insensitive. Virtual models 1-6 are designed based 473 

on the zeroth-order theory in which an attempt is made cover all possible choices by fixing the 474 

initial-yield stress, fixing the linear strain hardening and simultaneous fixing a combination of the 475 

initial-yield stress and linear-strain hardening based on the mean value theorem [2, 16, 18] (i.e. the 476 

mean value of the rigid stress-strain curve is fixed).  Virtual-models 7-9 are designed based on the 477 

first-order identities presented in Section 2.4 in which the initial-yield stress and linear strain 478 

hardening are simultaneously fixed by solving Eqs. (21) with two different degrees of freedom 479 

(i.e. 
1g  and 

2g ).  According to the presented peak loads in Table 3, it is clear that the virtual models 480 

scaled to half of full size predict the peak load of the full-scale model with non-zero error when 481 

the zeroth-order finite similitude theory is used in which the error percentage is considerable for 482 

virtual models made of Al 2024.  Note that in most practical situations it is not always possible to 483 

perform an experiment with a full-scale model, so it can be difficult to anticipate which model will 484 

predict to good accuracy the responses of a full-scale model.  It is required therefore a method 485 

(such as the first order finite-similitude approach) that can automatically predict the responses of 486 

the intended models with best accuracy.  Based on the presented peak loads in Table 3, it is 487 

apparent that the peak load of the full-scale model is predicted with zero error using the first-order 488 

finite similitude theory. 489 

 490 

Table 1. The material properties of the strain rate insensitive materials. 491 

Material 

Yield stress: 

s  
( MPa ) 

Elastic 

modulus 

(GPa ) 

Linear strain hardening: 

hE  
( MPa ) 

Density 

( 3kg m ) 
Poisson 

ratio 

Al 6061-T6 

[25] 
310 67.50 1240 2700 0.33 

Al 2024-T3 

[25] 
366 73.10 2800 2780 0.33 

Aluminium 

alloy [25] 
140 67 557.62 2700 0.33 

 492 

 493 



Table 2. The properties of the full-scale and virtual models. 494 

Model Method 
Fixed 

parameters 

Material Scaling parameters 

First 

trial 

model 

Second 

trial 

model 
1  2  

01

  02

  1g  2g  1R  

Full-Scale - - Al 6061 - - - - - - - - 

Virtual 

Model 1 

Zeroth 

order 

s  

(refer to 

Eq. (24)) 

Al 2024 - 0.50 - 7.77 - 0.47 - - 

Virtual 

Model 2 s  Al alloy - 0.50 - 8 - 0.74 - - 

Virtual 

Model 3 

hE  

(refer to 

Eq. (24)) 

Al 2024 - 0.50 - 7.77 - 0.34 - - 

Virtual 

Model 4 hE  Al alloy - 0.50 - 8 - 0.75 - - 

Virtual 

Model 5 

Mean value 

(refer to 

Refs. [2, 16 

and 18]) 

Al 2024 - 0.50 - 7.77 - 0.37 - - 

Virtual 

Model 6 
Mean value Al alloy - 0.50 - 8 - 0.75 - - 

Virtual 

Model 7 

First 

order 

s  and 

hE  

(refer to 

Eq. (24))  

Al 2024 Al alloy 

0.50 0.35 7.77 23.32 0.33 0.52 
-

0.99 

Virtual 

Model 8 
0.50 0.30 7.77 37.04 0.26 0.45 

-

0.99 

Virtual 

Model 9 
0.50 0.25 7.77 64 0.30 0.37 

-

0.99 

 495 

Table 3. The properties and peak loads of the full-scale and virtual models.   496 

Model 

Tube geometrical properties ( mm ) Striking mass velocity 

( mm ms ) 
Peak load 

( kN ) 

(Error%) 

Thickness Mean radius 

First trial 

model 

Second 

trial model 

First trial 

model 

Second 

trial model 

First trial 

model 

Second 

trial model 

Full-Scale 2.10 - 14.07 - 120 - 113.52 

Virtual 

Model 1 
1.05 - 7.04 - 128.50 - 

131.55 

(15.88%) 

Virtual 

Model 2 
1.05 - 7.04 - 80.64 - 113.42 (0.10%) 

Virtual 

Model 3 
1.05 - 7.04 - 177.71 - 81.82 (27.93%) 

Virtual 

Model 4 
1.05 - 7.04 - 80.47 - 113.81 (0.26%) 

Virtual 

Model 5 
1.05 - 7.04 - 162.97 - 92.65 (18.38%) 

Virtual 

Model 6 
1.05 - 7.04 - 80.53 - 113.68 (0.14%) 

Virtual 

Model 7 
1.05 0.74 7.04 4.93 182.67 80.45 113.52 (0%) 

Virtual 

Model 8 
1.05 0.63 7.04 4.22 233.38 80.21 113.50 (0%) 



Virtual 

Model 9 
1.05 0.53 7.04 3.52 197.73 80.39 113.52 (0%) 

 497 

4.2.2. Case Study I: Analytical relation (Cowper-Symonds constitutive equation) 498 

By considering the strain rate effects using the Cowper-Symonds constitutive equation, the peak 499 

load of a tube subjected to an axial impact can be obtained as [30-31]: 500 
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where   represents strain rates and D  and q  are experimentally determined constants.  501 

According to Eq. (25), when the strain-rate effects are considered using the Cowper-Symonds 502 

constitutive equation, two different degrees of freedom are required to simultaneously fix the 503 

initial-yield stress and strain hardening effects.  In Eq. (25) the initial-yield stress and the linear 504 

strain hardening are two independent physical properties that require two degrees of freedom to 505 

scale their effects.  In the following, the presented method based on the first-order finite similitude 506 

theory is tested using the analytical relation in Eq. (25). 507 

Consider then the full-scale and virtual models with properties listed at Tables 4 and 5.  Also, the 508 

material properties of the full-scale and virtual models are tabulated according to Table 6. Note 509 

that virtual models 1-6 are designed based on the zeroth-order theory in which the developed 510 

method in Refs. [2, 16, 18] based on the mean-value theorem is used. It was found in Refs. [2, 16, 511 

18] that the developed method based on the mean-value theorem and the zeroth-order finite 512 

similitude theory can provide much better results compared with other methods. In this section, it 513 

will be revealed that the developed method in Sections 2.4 and 3 can provide even better results 514 

than the method presented in Refs. [2, 16, 18].  Virtual-models 7-20 are designed based on the 515 

first-order theory presented in Sections 2.4 and 3 in which the initial-yield stress as function of 516 

strain rate and the linear strain hardening as function of strain rates are simultaneously fixed with 517 

two different degrees of freedom (i.e. 1g  and 2g ) for the first time.  According to Tables 4 and 5 518 

and Fig. 8, a comparison is performed for the zeroth-order method in which it is found that fixing 519 

the mean value of the initial-yield stress provides much better predictions than fixing of the mean 520 

value of the linear strain hardening. In the following, the results of the first-order theory are 521 



compared with the best design of the zeroth-order theory (i.e. when the mean value of the initial-522 

yield stress is fixed). 523 

As it mentioned in Section 3, in this exploratory study 
1R  is free to be set to any value provided 524 

the temporal scaling parameters 
1g  and 

2g  are reasonable.  A zero 
1R  value returns zeroth-order 525 

identities, so a reasonable initial exploratory range for 
1R  might be 

11 1R−   , where it is 526 

appreciated that 
1R  can take up negative or positive values.  Note that 

1R  provides a measure of 527 

how far the identities in Eqs. (12) depart from zeroth-order behaviour with scale.  The fact that the 528 

theory provides only one single parameter 
1R  for all the physical quantities in Eq. (12) is an 529 

impressive aspect of the theory.  In the trials presented here the range 11 0R−    provides positive 530 

real values for 
1g  and 

2g  on solution of Eqs. (21).  This feature is revealed in Tables 4 and 5 and 531 

Fig. 9, where the effect of 
1R  over the critical range 

11 0R−    and beyond (i.e. 
11 1000R  ) is 532 

investigated for virtual model 9.  Note that, results for the range 
11 1000R   are presented in 533 

Table 4 to largely confirm the expected outcome that no useful information is obtained, as revealed 534 

by 1g  and 2g  taking on complex values.  Note that although accuracy of the first-order theory is 535 

affected by the values of 
1R , it always predicts the peak load of the full-scale model with greater 536 

accuracy than the zeroth-order theory. 537 

Also, the peak load of full-scale model is predicted using the methods developed based on the 538 

zeroth-order and first-order theories according to Figs. 10 and 11 in which the effects of materials 539 

and dimensional scaling factors of the second projected models are sought. It is revealed that the 540 

peak load of full-scale model is not considerably affected by the dimensional scaling factors of the 541 

second projected models. Also, it is found that the peak load of full-scale model is predicted to 542 

good accuracy using the method derived based on the first-order theory for all the used materials. 543 

Furthermore, it is revealed that the first-order finite similitude theory predicts the response of full-544 

scale model with greater accuracy than the zeroth-order theory.  It should be emphasized that the 545 

reported errors in the depicted figures are calculated based on the areas under the curves. 546 

Finally, the effect of small dimensional scaling factors (e.g. 2 0.008 = ) on accuracy is presented 547 

in Fig. 12.  The figure confirms that prediction accuracy with the first-order theory is not 548 

significantly diminished by large reductions in scale.  Up to a 125-fold reduction is presented in 549 



Fig. 12 but similar to the studies above, for peak load versus different strain rate, predictions are 550 

returned with errors close to zero.  551 

Table 4. The properties of the full-scale and virtual models.   552 

Model Method 
Fixed 

parameters 

Material Scaling parameters 

First trial 

model 

Second 

trial model 1  2  
01

  02

  1g  2g  1R  

Full-

Scale 
- - Magnesium - - - - - - - - 

Virtual 

Model 1 

Zeroth 

order 

Y  
(refer to 

Eq. (17a))   

Steel - 0.50 - 1.73 - 0.73 - - 

Virtual 

Model 2 

H * 

(refer to 

Eq. (17b))   

Steel - 0.50 - 1.73 - 0.40 - - 

Virtual 

Model 3 
Y  Aluminium - 0.50 - 5.07 - 0.57 - - 

Virtual 

Model 4 
H  Aluminium - 0.50 - 5.07 - 0.87 - - 

Virtual 

Model 5 
Y  Copper - 0.50 - 1.52 - 0.95 - - 

Virtual 

Model 6 
H  Copper - 0.50 - 1.52 - 1.96 - - 

Virtual 

Model 7 

First 

order 

Y  and 

H  
(refer to 

Eqs. (17))    

Steel Aluminium 

0.50 0.45 1.73 6.95 0.37 0.94 -0.24 

Virtual 

Model 8 
0.50 0.40 1.73 9.89 0.50 0.53 -0.58 

Virtual 

Model 9 

0.50 0.30 1.73 23.45 
No 

solution or 

complex 

values 

1000 

0.50 0.30 1.73 23.45 100 

0.50 0.30 1.73 23.45 10 

0.50 0.30 1.73 23.45 5 

0.50 0.30 1.73 23.45 1 

0.50 0.30 1.73 23.45 0.34 0.98 -0.10 

0.50 0.30 1.73 23.45 0.38 0.56 -0.30 

0.50 0.30 1.73 23.45 0.46 0.43 -0.50 

0.50 0.30 1.73 23.45 0.60 0.36 -0.70 

0.50 0.30 1.73 23.45 1.08 0.32 -0.90 

0.50 0.30 1.73 23.45 

No 

solution or 

complex 

values 

-2 

0.50 0.30 1.73 23.45 -5 

0.50 0.30 1.73 23.45 -10 

0.50 0.30 1.73 23.45 -100 

0.50 0.30 1.73 23.45 
-

1000 

Virtual 

Model 10 
0.50 0.20 1.73 79.14 0.35 0.48 -0.18 

Virtual 

Model 11 
0.50 0.10 1.73 633.15 0.35 0.23 -0.18 

Virtual 

Model 12 

Steel Copper 

0.50 0.45 1.73 2.09 0.42 1.45 -0.27 

Virtual 

Model 13 
0.50 0.40 1.73 2.98 0.39 1.66 -0.17 

Virtual 

Model 14 
0.50 0.30 1.73 7.05 0.38 1.66 -0.09 



Virtual 

Model 15 
0.50 0.20 1.73 23.80 0.38 0.95 -0.12 

Virtual 

Model 16 
0.50 0.10 1.73 190.37 0.37 0.68 -0.06 

Virtual 

Model 17 
0.02 

1.33 
210−  

2.71 
410  

8.03 
410  

0.01 0.04 -0.20 

Virtual 

Model 18 
0.02 0.01 

2.71 
410  

1.90 
510  

0.01 0.04 -0.15 

Virtual 

Model 19 

1.33 
210−  

0.01 
9.14 

410  

1.90 
510  

0.01 0.03 -0.20 

Virtual 

Model 20 
0.01 

0.80 
210−  

2.17 
510  

3.72 
510  

0.01 0.03 -0.16 

*In this section, H refers to the mean value of linear strain hardening as a function of strain rate (i.e. the mean value 553 

of the identity ( )( )1
1

q

hE D+ )  554 

 555 

Table 5. The properties of the full-scale and virtual models.   556 

Model 

Tube geometrical properties ( mm ) Striking mass 

Thickness Mean radius Length 
Velocity 

( mm ms ) 

Mass 

( kg ) 

First 

trial 

model 

Second 

trial 

model 

First 

trial 

model 

Second 

trial 

model 

First 

trial 

model 

Second 

trial 

model 

First 

trial 

model 

Second 

trial 

model 

First 

trial 

model 

Second 

trial 

model 

Full-Scale 2.10 - 14.07 - 80 - 120 - 0.26 - 

Virtual Model 

1 
1.05 - 7.04 - 40 - 82.36 - 0.15 - 

Virtual Model 

2 
1.05 - 7.04 - 40 - 150.99 - 0.15 - 

Virtual Model 

3 
1.05 - 7.04 - 40 - 105.18 - 0.05 - 

Virtual Model 

4 
1.05 - 7.04 - 40 - 68.87 - 0.05 - 

Virtual Model 

5 
1.05 - 7.04 - 40 - 62.98 - 0.17 - 

Virtual Model 

6 
1.05 - 7.04 - 40 - 30.60 - 0.17 - 

Virtual Model 

7 
1.05 0.95 7.04 6.33 40 36 163.70 57.20 0.15 0.04 

Virtual Model 

8 
1.05 0.84 7.04 5.63 40 32 119.54 90.09 0.15 0.03 

Virtual 

Model 

9 

9/1 1.05 0.63 7.04 4.22 

40 24 

179.20 36.93 

0.15 0.01 

9/2 1.05 0.63 7.04 4.22 156.59 64.88 

9/3 1.05 0.63 7.04 4.22 130.76 84.38 

9/4 1.05 0.63 7.04 4.22 99.50 100.34 

9/5 1.05 0.63 7.04 4.22 55.42 114.21 

Virtual Model 

10 
1.05 0.42 7.04 2.81 40 16 170.65 50.23 0.15 

3.30 
310−  

Virtual Model 

11 
1.05 0.21 7.04 1.41 40 8 170.42 51.62 0.15 

4.11 
410−  

Virtual Model 

12 
1.05 0.95 7.04 6.33 40 36 142.64 37.23 0.15 0.13 



Virtual Model 

13 
1.05 0.84 7.04 5.63 40 32 153.31 28.88 0.15 0.09 

Virtual Model 

14 
1.05 0.63 7.04 4.22 40 24 160.21 21.74 0.15 0.04 

Virtual Model 

15 
1.05 0.42 7.04 2.81 40 16 157.67 25.39 0.15 0.01 

Virtual Model 

16 
1.05 0.21 7.04 1.41 40 8 163.77 17.56 0.15 

1.37 
310−  

Virtual Model 

17 

4.20 
210−  

2.80 
210−  

28.14 
210−  

18.76 
210−  

1.60 1.07 198.93 39.82 
9.59 

610−  

3.24 
610−  

Virtual Model 

18 

4.20 
210−  

2.10 
210−  

28.14 
210−  

14.07 
210−  

1.60 0.80 206.22 34.34 
9.59 

610−  

1.37 
610−  

Virtual Model 

19 

2.80 
210−  

2.10 
210−  

18.76 
210−  

14.07 
210−  

1.07 0.80 208.08 40.30 
2.85 

610−  

1.37 
610−  

Virtual Model 

20 

2.10 
210−  

1.68 
210−  

14.07 
210−  

11.26 
210−  

0.80 0.64 220.59 36.16 
1.20 

610−  

6.99 
710−  

 557 

Table 6. The material properties of the strain rate sensitive materials.   558 

Material 

Yield 

stress: s  
( MPa ) 

Elastic 

modulus 

(GPa ) 

Linear 

strain 

hardening: 

hE  
( MPa ) 

Density 

( 3kg m ) 

Poisson 

ratio 
110−  

D  

(1 ms ) 
210−  

q  

AZ31B-H24 

magnesium 

[32] 

197.40 45.00 828.60 1700 2.90 2412.49 3.09 

Steel [33] 345.00 210.00 4500.00 7850 2.86 684.40 3.91 

Aluminium 

[30] 
295.00 72.40 542.60 2685 3.30 128800.00 4.00 

Copper [34] 204.60 123.60 218.76 8930 3.40 177.80 4.99 
 559 

 560 



Figure 8. A comparison between the zeroth order methods. 561 

 562 
Figure 9. An investigation into the effect of 1R  values on the results.  563 

 564 

 565 



Figure 10. An investigation into the effect of the second dimensional scaling factors and the 566 

different materials on the results. 567 

 568 
Figure 11. An investigation into the effect of the second dimensional scaling factors and the 569 

different materials on the results. 570 



 571 
Figure 12. An investigation into the effect of the large dimensional scaling factors on the 572 

accuracy of predictions. 573 

 574 

4.3. Case Study II: Numerical results (Cowper-Symonds constitutive equation)  575 

Considered here are the full-scale and virtual models with properties listed in Tables 4 and 5. 576 

Furthermore, the material properties of the full-scale and virtual models are tabulated according to 577 

Table 6.  The virtual-models 1, 3 and 5 are designed based on the zeroth order theory in which the 578 

developed method in Refs. [2, 16, 18] based on a mean-value theorem is used. The full-scale and 579 

virtual-models 1, 3 and 5 are respectively made of magnesium, steel, aluminium and copper 580 

materials presented at Table 6; also, virtual-models 1, 3 and 5 are scaled to half of the full-size 581 

dimensions. Plus, virtual-models 9/2 and 14, which are designed based on the first-order theory, 582 

are presented according to Tables 4 and 5. Virtual-models 9/2 and 14 are formed from two different 583 

models and are designed to improve the accuracy of the predictions provided by virtual-model 1 584 

made of steel material. In other words, an attempt is made to use the first-order theory to enhance 585 

the predictions provided by virtual-model 1 by using virtual-models 3 and 5, which are respectively 586 

made of aluminium and copper. As recorded in Tables 4 and 5, virtual-model 9/2 is formed from 587 

two models: the first one is scaled to 0.50 and made of steel; and the second one is scaled to 0.30 588 



and made of aluminium. Similarly, it is revealed that virtual-model 14 is formed from two models: 589 

the first one is scaled to 0.50 and made of steel; and the second one is scaled to 0.30 and made of 590 

copper. Also, virtual-models 9/2 and 14 are designed based on the first-order theory in which the 591 

mean value of the initial-yield stress and the mean value of the linear strain hardening are 592 

simultaneously fixed, whilst virtual-models 1, 3 and 5 are designed based on the zeroth-order 593 

theory in which only one feature of the stress-strain curve is fixed, i.e. the mean value of the initial-594 

yield stress. 595 

The axial force-time, shortening curves and the peak loads together with error percentages of the 596 

full-scale and virtual models 1, 3, 5, 9/2 and 14, presented in Tables 4 and 5, are respectively 597 

presented according to Fig. 13 and Table 7. Also, the buckling shapes, the shortenings and the 598 

maximum outside radius together with error percentages of the full-scale and virtual models 1, 3, 599 

5, 9/2 and 14 are presented according to Fig. 14 and Table 7.  The depicted errors in Fig. 13 are 600 

calculated based on the area under the curves.  601 

According to Fig. 13 and Table 7, it is clear that virtual-models 3 and 5 designed based on the 602 

zeroth-order theory and respectively made of aluminium and copper materials predict the response 603 

of the full-scale model to a good accuracy whereas virtual-model 1 designed based on the zeroth-604 

order theory and made of steel material provides a prediction of the full-scale model structure 605 

response with a huge difference since strain hardening is not captured. The unusual response of 606 

virtual model 1 in Fig. 13 is mainly due to the relatively high values of the linear strain hardening 607 

and yield stress as tabulated in Table 6. An attempt was made to improve the response of virtual-608 

model 1 using models 3 and 5 and the first-order theory. Based on the presented results according 609 

to Fig. 13 and Table 7, the responses of the full-scale model are predicted using virtual-models 9/2 610 

and 14 in which a combination of model 1 made of steel with models 3 and 5 made of aluminium 611 

and copper materials is used. For example, it is found that the error percentage of 103.33% in 612 

predicting the peak load of the full-scale model is respectively decreased to 3.06% and 3.02% 613 

when virtual-models 9/2 and 14 are used. 614 

Also, the buckling shapes, the shortenings together with error percentages and the maximum outer-615 

tube radii together with error percentages of the full-scale and virtual models are presented in Fig. 616 

14 and Table 7.  It is revealed that virtual-scale model 1, in contrast to the virtual-models 3 and 5, 617 

is not able to predict the response of the full-scale model with a good accuracy. However, the 618 

accuracy of virtual-model 1 made of steel is enhanced using the first-order theory and models 3 619 



and 5 according to Table 7.  Note that the error percentage of 38.51% in predicting the full-scale 620 

shortening is respectively decreased to 13.36% and 33.51% when virtual-models 9/2 and 14 are 621 

used.  Furthermore, the error percentage of 16.75% in predicting the maximum outer full-scale 622 

tube radius is decreased to 3.55% and 1.57% when virtual-models 9/2 and 14 are respectively 623 

applied.  The buckling shapes of virtual models 1, 3 and 5, which are depicted in Fig. 14 (and 624 

designed based on the zeroth-order theory) can be directly compared to the full-scale model.  625 

However, as depicted in Fig.14, buckling shapes from the individual scaled experiments of the 626 

first-order models are required to be combined according to the displacement identity Eq. (23d), 627 

which is a facility not available to the Abaqus software. 628 

 629 

 630 

 631 

Table 7. The global outputs of tubes including the peak loads, shortenings and maximum outer 632 

tube radius 633 

Case 

study 
Model 

The peak loads 

( kN ) (error%) 

The shortenings 

( mm ) (error%) 

The maximum outer tube 

radius ( mm ) (error%) 

II 

Full-Scale 87.65 24.02 21.67 

Virtual Model 1 178.22 (103.33%) 14.77 (38.51%) 18.04 (16.75%) 

Virtual Model 3 86.53 (1.28%) 29.65 (23.44%) 21.74 (0.32%) 

Virtual Model 5 88.67 (1.16%) 35.30 (46.96%) 21.88 (0.97%) 

Virtual Model 

9/2 
90.33 (3.06%) 27.23 (13.36%) 20.90 (3.55%) 

Virtual Model 14 85.00 (3.02%) 32.07 (33.51%) 21.33 (1.57%) 

III 

Full-Scale 72.79 32.60 21.65 

Virtual Model 1 95.45 (31.13%) 27.56 (15.46%) 21.86 (0.97%) 

Virtual Model 2 83.07 (14.12%) 29.58 (9.26%) 21.64 (0.05%) 

Virtual Model 3 81.53 (12.01%) 28.28 (13.25%) 21.94 (1.34%) 

Virtual Model 4 80.69 (10.85%) 29.18 (10.49%) 21.70 (0.23%) 

Virtual Model 5 90.45 (24.26%) 27.38 (16.01%) 21.89 (1.11%) 

 634 



 635 
(a) The axial force versus time curves 636 



 637 
(b) The axial force versus shortening curves 638 

 639 
Figure 13. Axial force-time and axial force-shortening curves of full-scale and virtual models. 640 

 641 

 642 
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 644 

 645 

 646 

Full-Scale (Mg) 
Zeroth Order Theory 

Model 1 (St) 

Zeroth Order Theory 

Model 3 (Al) 

Zeroth Order Theory 

Model 5 (Cu) 

    



 

First Order Theory 

Model 9/2 

First Order Theory 

Model 14 

First Trial Model 

(St)  

Second Trial Model 

(Al) 

First Trial Model 

(St)  

Second Trial Model 

(Cu) 

    
Figure 14. Buckling shapes. 647 

 648 

4.4. Case Study III: Numerical results (Johnson-Cook constitutive equation)  649 

The properties of the full-scale and virtual models are tabulated according to Tables 8 and 9. Also, 650 

the material properties of the full-scale and virtual models are listed in Table 10. Note here that 651 

the Johnson-Cook constitutive equation, which can capture the effects of both the initial-yield 652 

stress and strain hardening, is used. Moreover, the best predictions of the intended models are 653 

provided in Refs. [2, 16, 18] with the Johnson-Cook constitutive equation employed in zeroth-654 

order scaling.  Here it is aimed to show that first-order theory can provide better predictions than 655 

those presented in Refs. [2, 16, 18] in which the Johnson-Cook constitutive equation is used.  656 

Virtual-models 4 and 5 are designed based on the first-order theory in which Eqs. (21) are 657 

employed to determine 
1g  and 

2g  with 
1R  specified.  Virtual-models 1-3 are designed based on 658 

the zeroth-order theory in which the mean value of the initial-yield stress and strain hardening as 659 

function of strain rates is fixed. The full-scale and virtual-models 1-3 are respectively made of 660 

magnesium, steel, aluminium and copper materials presented at Table 10.  In addition, virtual-661 

models 1-3 are scaled to half of the full-scale dimensions. Plus, virtual-models 4 and 5 are formed 662 

from two different models, which are designed to improve the accuracy of the predictions provided 663 

by virtual-model 1 made of steel.  Thus, the first-order theory is applied here in an attempt to 664 

enhance the predictions provided by virtual-model 1 by involving models 2 and 3, which are 665 

respectively made of aluminium and copper. As recorded in Tables 8 and 9, virtual-model 4 is 666 



formed from models made of steel and aluminium and scaled to 0.50 and 0.30 of the full-scale 667 

dimensions. In addition, virtual-model 5 is formed from models, which are respectively made of 668 

steel and copper and scaled to 0.50 and 0.30 of the full-scale dimensions.  669 

The axial force-time, shortening curves and the peak loads together with error percentages of the 670 

full-scale and virtual-models 1-5, presented in Tables 8 and 9, are respectively presented according 671 

to Fig. 15 and Table 7. The depicted errors in Fig. 15 are calculated based on the area under the 672 

curves.  Also, the buckling shapes, the shortenings and the maximum outer radii together with 673 

error percentages of the full-scale and virtual-models 1-5 are presented according to Fig. 16 and 674 

Table 7.  The buckling shapes provided with the first order theory (i.e. models 4 and 5) are depicted 675 

in Fig. 16 and show a reasonable agreement with the full-scale model.  Although as mentioned 676 

above Abaqus does not have the means to combine the buckling shapes from the individual scaled 677 

experiments but by means of Eq. (23) and by identification of the nodes located on the outside 678 

surfaces of the tubes the buckling shapes are generated in the graph in Fig. 16 and reasonable 679 

replication is revealed.   680 

According to Fig. 15 and Table 7, it is clear that virtual-models 1, 2 and 3 designed based on the 681 

zeroth-order theory and respectively made of steel, aluminium and copper materials mostly predict 682 

the response of the full-scale model with reasonable accuracy. However, these models do predict 683 

some of the full-scale model responses with some error; for example, virtual-model 1 predicts the 684 

peak load of the full-scale tube with an error percentage of 31.13%.  This is improved using the 685 

first-order theory involving models 2 and 3.  Virtual-models 4 and 5, based on the first-order 686 

theory, reduce the error percentage of 31.13% in prediction of peak load to respectively 10.85% 687 

and 24.26%. In all cases, virtual-models 4 and 5 provide improved accuracy over model 1 but 688 

errors nevertheless remain. 689 

The buckling shapes, the shortenings together with error percentages and the maximum outer-tube 690 

radii together with error percentages of the full-scale and virtual-models 1-5 are presented in Fig. 691 

16 and Table 7.  The maximum outer full-scale tube radius is predicted by virtual-models 1-3 692 

(zeroth order) and virtual-models 4-5 (first-order) to good accuracy.  However, the shortening of 693 

the full-scale model predicted with an error percentage of 15.46% using virtual-model 1 is 694 

predicted with an error percentage of 10.49% using virtual-model 4 thus displaying an 695 

enhancement in the accuracy of the prediction provided by virtual-model 1. 696 



Finally, it is clear from the results presented in this paper that the new approach predicts the overall 697 

responses of impacted tubes such as shortenings, peak loads and even the overall behaviour of the 698 

axial force-shortening curves to a good accuracy.  However, not insignificant differences can occur 699 

at specific points and times, such as those revealed at distinct instances in the axial force-shortening 700 

curves (see Fig. 13). Possible sources of improvement are alternative material models and/or 701 

application of a higher order finite similitude approach, as this provides additional degrees of 702 

freedom, but is an aspect for future study.  Additional sources of uncertainly are friction 703 

coefficients, which are assumed equal here for full-scale and trial models.    704 

 705 

Table 8. The properties of the full-scale and virtual models.   706 

Model Method 
Fixed 

parameters 

Material Scaling parameters 

First trial 

model 

Second 

trial model 1  2  
01

  02

  1g  2g  
1R  

Full-Scale - - Magnesium - - - - - - - - 

Virtual 

Model 1 

Zeroth 

order 

H  

(refer to Eq. 

(17b)) 

Steel - 0.50 - 1.80 - 0.91 - - 

Virtual 

Model 2 
H  Aluminium - 0.50 - 5.24 - 0.53 - - 

Virtual 

Model 3 
H  Copper - 0.50 - 1.58 - 1.28 - - 

Virtual 

Model 4 First 

order 

Y  and H  

(refer to Eqs. 

(17))  

Steel Aluminium 0.50 0.30 1.80 24.28 1.00 0.30 -0.75 

Virtual 

Model 5 
Y  and H  Steel Copper 0.50 0.30 1.80 7.32 0.91 0.76 -0.36 

 707 

Table 9. The properties of the full-scale and virtual models.   708 

Model 

Tube geometrical properties ( mm ) Striking mass  

Thickness Mean radius Length Velocity ( mm ms ) Mass ( kg ) 

First 

model 

Second 

model 

First 

model 

Second 

model 

First 

model 

Second 

model 

First 

model 

Second 

model 

First 

model 

Second 

model 

Full-Scale 2.10 - 14.07 - 80 - 120 - 0.26 - 

Virtual Model 

1 
1.05 - 7.04 - 40 - 66.09 - 0.15 - 

Virtual Model 

2 
1.05 - 7.04 - 40 - 113.59 - 0.05 - 

Virtual Model 

3 
1.05 - 7.04 - 40 - 47.00 - 0.17 - 

Virtual Model 

4 
1.05 0.63 7.04 4.22 40 24 59.74 118.46 0.15 0.01 

Virtual Model 

5 
1.05 0.63 7.04 4.22 40 24 66.06 47.28 0.15 0.04 

 709 



Table 10. The material properties. 710 

Material 
Density 

( 3kg m ) 

Elastic 

modulus 

(GPa ) 

Poisson 

ratio 
110−  

A  
( MPa ) 

B  
( MPa ) 

n  
110−  

C  
110−  

0  

(1 ms ) 
310−  

Magnesium 

[11] 
1770 45.00 2.90 224.00 380.00 7.61 0.12 1 

Steel [11] 7890 200.00 3.00 350.00 275.00 3.60 0.22 1 

Aluminium 

[11] 
2700 72.40 0.33 265 426 3.40 0.15 1 

Copper [11] 8960 120.00 3.40 90.00 292.00 3.10 0.25 1 

 711 

 712 
(a) The axial force versus time curves 713 



 714 
(b) The axial force versus shortening curves 715 

 716 
Figure 15. The axial force-time and axial force-shortening curves of full-scale and virtual 717 

models. 718 
 719 

 720 
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 722 

 723 
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Figure 16. The buckling shapes. 725 

 726 

Conclusion 727 

In this paper a method has been developed for scaling of impact processes based on the first-order 728 

finite-similitude theory in which response characteristics of full-scale models can be predicted 729 

using scaled-trial models at two distinct scales.  Adjustment to the initial conditions in the scaled-730 

trial models (e.g. striking velocity and mass) were made to ensure good representations could be 731 

made of the behaviour at full scale. The accuracy of both first and zeroth-order finite similitude 732 

theories were assessed using both analytical methods and numerical simulations to demonstrate 733 

the improvements possible with the new theory.  734 

The following conclusions can be drawn from the work presented in the paper: 735 



• The finite-similitude theory has been further developed to capture all scale dependencies 736 

that arise in the fields describing impact mechanics. 737 

• A new differential form of similitude has been established, which when integrated links 738 

information across two scaled-impact experiments to the full-scale response. 739 

• Scale effects as previously defined by dimensional analysis cease to be scale effects, since 740 

proportional field differences feature in the new theory. 741 

• The new theory is equally applicable to analytical and numerical impact models and overall 742 

provides improved accuracy, to that obtained from a single impact scaled experiment. 743 

More specifically for the trial simulation performed it has been show that: 744 

• For first time, the initial-yield stress and linear strain hardening of an impacted structure 745 

made of a strain-rate insensitive material were simultaneously targeted using two different 746 

scaling parameters. In particular the mean values of initial-yield stress and linear strain 747 

hardening were matched for virtual and full-scale models. Comparison with the proposed 748 

method based on the zeroth-order theory revealed that an error of 18.38% in peak load 749 

estimated by a strain rate insensitive analytical model (Eq. (24)) can be decreased to 0% 750 

when the new method is used. 751 

• In numerical simulations in which the Cowper-Symonds constitutive equation was used, 752 

an error of 103.33% in predicting peak load with a single trial-steel tube was decreased to 753 

3.06% and 3.02% when respectively combined with the trial models made of aluminium 754 

and copper. 755 

• In numerical simulations in which the Johnson-Cook constitutive equation was used, an 756 

error of 31.13% in prediction of peak load created by a trial model made of steel was 757 

decreased to 10.85% when combined with a trial model made of aluminium using the first-758 

order theory.  759 
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