694 research outputs found

    Erkennung immunstimulatorischer Nukleinsäuren durch das angeborene Immunsystem

    Get PDF

    DNA sensing unchained

    Get PDF
    In two recent reports in Science, James Chen and colleagues provide compelling evidence that detection of cytosolic DNA triggers the production of a novel second messenger, cyclic GMP-AMP (cGAMP), which in turn activates a signaling pathway that induces type I interferons (IFNs) in a STING-dependent manner. They further unravel a key role for a so far uncharacterized murine protein E330016A19 (human homolog: C6ORF150), now termed cGAMP synthetase (cGAS), to act as the DNA sensor that generates cGAMP

    An unexpected role for RNA in the recognition of DNA by the innate immune system

    Get PDF
    A central function of our innate immune system is to sense microbial pathogens through the presence of their nucleic acid genomes or their transcriptional or replicative activity. In mammals, a receptor-based system is mainly responsible for the detection of these "non self" nucleic acids. Tremendous progress has been made in the past years in identifying the host constituents that are required for this intricate task. With regard to the sensing of RNA genome based pathogens by our innate immune system, a picture is emerging that includes certain families of the toll-like receptor family (TLR3, TLR7, TLR8) and the RIG-I like helicases (RIG-I, MDA5 and LGP2). Genetic loss of function studies implicate that the absence of these pathways can lead to a complete lack of recognition of certain RNA viruses. At the same time, intracellular DNA can also trigger potent innate immune responses, yet the players in this field are less clear. We and another group have recently identified a role for RNA polymerase III in the conversion of AT-rich DNA into an RNA ligand that is sensed by the RIG-I pathway. In this review article, we will discuss the mechanisms and implications of this novel pathway

    Species-specific detection of the antiviral small-molecule compound CMA by STING

    Get PDF
    Extensive research on antiviral small molecules starting in the early 1970s has led to the identification of 10-carboxymethyl-9-acridanone (CMA) as a potent type I interferon (IFN) inducer. Up to date, the mode of action of this antiviral molecule has remained elusive. Here we demonstrate that CMA mediates a cell-intrinsic type I IFN response, depending on the ER-resident protein STING. CMA directly binds to STING and triggers a strong antiviral response through the TBK1/IRF3 route. Interestingly, while CMA displays extraordinary activity in phosphorylating IRF3 in the murine system, CMA fails to activate human cells that are otherwise responsive to STING ligands. This failure to activate human STING can be ascribed to its inability to bind to the C-terminal ligand-binding domain of human STING. Crystallographic studies show that two CMA molecules bind to the central Cyclic diguanylate (c-diGMP)-binding pocket of the STING dimer and fold the lid region in a fashion similar, but partially distinct, to c-diGMP. Altogether, these results provide novel insight into ligand-sensing properties of STING and, furthermore, unravel unexpected species-specific differences of this innate sensor

    RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate

    Get PDF
    RNA is sensed by Toll-like receptor 7 (TLR7) and TLR8 or by the RNA helicases LGP2, Mda5 and RIG-I to trigger antiviral responses. Much less is known about sensors for DNA. Here we identify a novel DNA-sensing pathway involving RNA polymerase III and RIG-I. In this pathway, AT-rich double-stranded DNA (dsDNA) served as a template for RNA polymerase III and was transcribed into double-stranded RNA (dsRNA) containing a 5'-triphosphate moiety. Activation of RIG-I by this dsRNA induced production of type I interferon and activation of the transcription factor NF-kappaB. This pathway was important in the sensing of Epstein-Barr virus-encoded small RNAs, which were transcribed by RNA polymerase III and then triggered RIG-I activation. Thus, RNA polymerase III and RIG-I are pivotal in sensing viral DNA

    A mechanism for the inhibition of DNA-PK-mediated DNA sensing by a virus

    Get PDF
    The innate immune system is critical in the response to infection by pathogens and it is activated by pattern recognition receptors (PRRs) binding to pathogen associated molecular patterns (PAMPs). During viral infection, the direct recognition of the viral nucleic acids, such as the genomes of DNA viruses, is very important for activation of innate immunity. Recently, DNA-dependent protein kinase (DNA-PK), a heterotrimeric complex consisting of the Ku70/Ku80 heterodimer and the catalytic subunit DNA-PKcs was identified as a cytoplasmic PRR for DNA that is important for the innate immune response to intracellular DNA and DNA virus infection. Here we show that vaccinia virus (VACV) has evolved to inhibit this function of DNA-PK by expression of a highly conserved protein called C16, which was known to contribute to virulence but by an unknown mechanism. Data presented show that C16 binds directly to the Ku heterodimer and thereby inhibits the innate immune response to DNA in fibroblasts, characterised by the decreased production of cytokines and chemokines. Mechanistically, C16 acts by blocking DNA-PK binding to DNA, which correlates with reduced DNA-PK-dependent DNA sensing. The C-terminal region of C16 is sufficient for binding Ku and this activity is conserved in the variola virus (VARV) orthologue of C16. In contrast, deletion of 5 amino acids in this domain is enough to knockout this function from the attenuated vaccine strain modified vaccinia virus Ankara (MVA). In vivo a VACV mutant lacking C16 induced higher levels of cytokines and chemokines early after infection compared to control viruses, confirming the role of this virulence factor in attenuating the innate immune response. Overall this study describes the inhibition of DNA-PK-dependent DNA sensing by a poxvirus protein, adding to the evidence that DNA-PK is a critical component of innate immunity to DNA viruses

    Inhibition of the RNA polymerase III-mediated dsDNA-sensing pathway of innate immunity by vaccinia virus protein E3.

    Get PDF
    The vaccinia virus E3 protein is an important intracellular modulator of innate immunity that can be split into distinct halves. The C terminus contains a well defined dsRNA-binding domain, whereas the N terminus contains a Z-DNA-binding domain, and both domains are required for virulence. In this study, we investigated whether the E3 Z-DNA-binding domain functions by sequestering cytoplasmic dsDNA thereby preventing the induction of type I interferon (IFN). In line with this hypothesis, expression of E3 ablated both IFN-beta expression and NF-kappaB activity in response to the dsDNA, poly(dA-dT). However, surprisingly, the ability of E3 to block poly(dA-dT) signalling was independent of the N terminus, whereas the dsRNA-binding domain was essential, suggesting that the Z-DNA-binding domain does not bind immunostimulatory dsDNA. This was confirmed by the failure of E3 to co-precipitate with biotinylated dsDNA, whereas the recruitment of several cytoplasmic DNA-binding proteins could be detected. Recently, AT-rich dsDNA was reported to be transcribed into 5'-triphosphate poly(A-U) RNA by RNA polymerase III, which then activates retinoic acid-inducible gene I (RIG-I). Consistent with this, RNA from poly(dA-dT) transfected cells induced IFN-beta and expression of the E3 dsRNA-binding domain was sufficient to ablate this response. Given the well documented function of the E3 dsRNA-binding domain we propose that E3 blocks signalling in response to poly(dA-dT) by binding to transcribed poly(A-U) RNA preventing RIG-I activation. This report describes a DNA virus-encoded inhibitor of the RNA polymerase III-dsDNA-sensing pathway and extends our knowledge of E3 as a modulator of innate immunity

    The cGAS-STING pathway drives type I IFN immunopathology in COVID-19.

    Get PDF
    COVID-19, which is caused by infection with SARS-CoV-2, is characterized by lung pathology and extrapulmonary complications <sup>1,2</sup> . Type I interferons (IFNs) have an essential role in the pathogenesis of COVID-19 (refs <sup>3-5</sup> ). Although rapid induction of type I IFNs limits virus propagation, a sustained increase in the levels of type I IFNs in the late phase of the infection is associated with aberrant inflammation and poor clinical outcome <sup>5-17</sup> . Here we show that the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, which controls immunity to cytosolic DNA, is a critical driver of aberrant type I IFN responses in COVID-19 (ref. <sup>18</sup> ). Profiling COVID-19 skin manifestations, we uncover a STING-dependent type I IFN signature that is primarily mediated by macrophages adjacent to areas of endothelial cell damage. Moreover, cGAS-STING activity was detected in lung samples from patients with COVID-19 with prominent tissue destruction, and was associated with type I IFN responses. A lung-on-chip model revealed that, in addition to macrophages, infection with SARS-CoV-2 activates cGAS-STING signalling in endothelial cells through mitochondrial DNA release, which leads to cell death and type I IFN production. In mice, pharmacological inhibition of STING reduces severe lung inflammation induced by SARS-CoV-2 and improves disease outcome. Collectively, our study establishes a mechanistic basis of pathological type I IFN responses in COVID-19 and reveals a principle for the development of host-directed therapeutics

    Listeria monocytogenes is sensed by the NLRP3 and AIM2 inflammasome

    Get PDF
    The inflammasome pathway functions to regulate caspase-1 activation in response to a broad range of stimuli. Caspase-1 activation is required for the maturation of the pivotal pro-inflammatory cytokines of the pro-IL-1beta family. In addition, caspase-1 activation leads to a certain type of cell death known as pyroptosis. Activation of the inflammasome has been shown to play a critical role in the recognition and containment of various microbial pathogens, including the intracellularly replicating Listeria monocytogenes; however, the inflammasome pathways activated during L. monocytogenes infection are only poorly defined. Here, we demonstrate that L. monocytogenes activates both the NLRP3 and the AIM2 inflammasome, with a predominant involvement of the AIM2 inflammasome. In addition, L. monocytogenes-triggered cell death was diminished in the absence of both AIM2 and NLRP3, and is concomitant with increased intracellular replication of L. monocytogenes. Altogether, these data establish a role for DNA sensing through the AIM2 inflammasome in the detection of intracellularly replicating bacteria
    corecore