20 research outputs found

    Unravelling the photoprotective mechanisms of nature-inspired ultraviolet filters using ultrafast spectroscopy

    Get PDF
    There are several drawbacks with the current commercially available ultraviolet (UV) filters used in sunscreen formulations, namely deleterious human and ecotoxic effects. As a result of the drawbacks, a current research interest is in identifying and designing new UV filters. One approach that has been explored in recent years is to use nature as inspiration, which is the focus of this review. Both plants and microorganisms have adapted to synthesize their own photoprotective molecules to guard their DNA from potentially harmful UV radiation. The relaxation mechanism of a molecule after it has been photoexcited can be unravelled by several techniques, the ones of most interest for this review being ultrafast spectroscopy and computational methods. Within the literature, both techniques have been implemented on plant-, and microbial-inspired UV filters to better understand their photoprotective roles in nature. This review aims to explore these findings for both families of nature-inspired UV filters in the hope of guiding the future design of sunscreens

    A perspective on femtosecond pump–probe spectroscopy in the development of future sunscreens

    Get PDF
    Given the negative impacts of overexposure to ultraviolet radiation (UVR) on humans, sunscreens have become a widely used product. Certain ingredients within sunscreens are responsible for photoprotection and these are known, collectively herein, as ultraviolet (UV) filters. Generally speaking, organic UV filters work by absorbing the potentially harmful UVR and dissipating this energy as harmless heat. This process happens on picosecond time scales and so femtosecond pump–probe spectroscopy (FPPS) is an ideal technique for tracking this energy conversion in real time. Coupling FPPS with complementary techniques, including steady-state spectroscopy and computational methods, can provide a detailed mechanistic picture of how UV filters provide photoprotection. As such, FPPS is crucial in aiding the future design of UV filters. This Perspective sheds light on the advancements made over the past two years on both approved and nature-inspired UV filters. Moreover, we suggest where FPPS can be further utilized within sunscreen applications for future considerations

    Unravelling the photoprotection properties of garden cress sprout extract

    Get PDF
    Plants, as with humans, require photoprotection against the potentially damaging effects of overexposure to ultraviolet (UV) radiation. Previously, sinapoyl malate (SM) was identified as the photoprotective agent in thale cress. Here, we seek to identify the photoprotective agent in a similar plant, garden cress, which is currently used in the skincare product Detoxophane nc. To achieve this, we explore the photodynamics of both the garden cress sprout extract and Detoxophane nc with femtosecond transient electronic absorption spectroscopy. With the assistance of liquid chromatography-mass spectrometry, we determine that the main UV-absorbing compound in garden cress sprout extract is SM. Importantly, our studies reveal that the photoprotection properties of the SM in the garden cress sprout extract present in Detoxophane nc are not compromised by the formulation environment. The result suggests that Detoxophane nc containing the garden cress sprout extract may offer additional photoprotection to the end user in the form of a UV filter booster

    Experimental and computational analysis of para-hydroxy methylcinnamate following photoexcitation

    Get PDF
    Para-hydroxy methylcinnamate is part of the cinnamate family of molecules. Experimental and computational studies have suggested conflicting non-radiative decay routes after photoexcitation to its S1(ππ*) state. One non-radiative decay route involves intersystem crossing mediated by an optically dark singlet state, whilst the other involves direct intersystem crossing to a triplet state. Furthermore, irrespective of the decay mechanism, the lifetime of the initially populated S1(ππ*) state is yet to be accurately measured. In this study, we use time-resolved ion-yield and photoelectron spectroscopies to precisely determine the S1(ππ*) lifetime for the s-cis conformer of para-hydroxy methylcinnamate, combined with time-dependent density functional theory to determine the major non-radiative decay route. We find the S1(ππ*) state lifetime of s-cis para-hydroxy methylcinnamate to be ∼2.5 picoseconds, and the major non-radiative decay route to follow the [1ππ*→1nπ*→3ππ*→S0] pathway. These results also concur with previous photodynamical studies on structurally similar molecules, such as para-coumaric acid and methylcinnamate

    N-Heteroacenes as an Organic Gain Medium for Room-Temperature Masers

    Get PDF
    The development of future quantum devices such as the maser, i.e., the microwave analog of the laser, could be well-served by the exploration of chemically tunable organic materials. Current iterations of room-temperature organic solid-state masers are composed of an inert host material that is doped with a spin-active molecule. In this work, we systematically modulated the structure of three nitrogen-substituted tetracene derivatives to augment their photoexcited spin dynamics and then evaluated their potential as novel maser gain media by optical, computational, and electronic paramagnetic resonance (EPR) spectroscopy. To facilitate these investigations, we adopted an organic glass former, 1,3,5-tri(1-naphthyl)benzene to act as a universal host. These chemical modifications impacted the rates of intersystem crossing, triplet spin polarization, triplet decay, and spin–lattice relaxation, leading to significant consequences on the conditions required to surpass the maser threshold

    Insight into the photodynamics of photostabilizer molecules

    Get PDF
    Solar exposure of avobenzone, one of the most widely used commercial UVA filters on the market, is known to cause significant degradation. This finding has fueled research into developing photostabilizer molecules. In an effort to provide insight into their stand-alone photoprotection properties, the excited state dynamics of the photostabilizer, 3-(3,4,5-trimethoxybenzylidene) pentane-2,4-dione (TMBP), and its phenolic derivative, 3-(4-hydroxy-3,5-dimethoxybenzylidene) pentane-2,4-dione (DMBP), were studied with ultrafast transient absorption spectroscopy. Solutions of TMPB and DMBP in ethanol and in an industry-standard emollient, as well as TMBP and DMBP deposited on synthetic skin mimic, were investigated. These experiments were allied with computational methods to aid interpretation of the experimental data. Upon photoexcitation, these photostabilizers repopulate the electronic ground state via nonradiative decay within a few picoseconds involving a twisted intramolecular charge transfer configuration in the excited state, followed by internal conversion and subsequent vibrational cooling in the ground state. This finding implies that, aside from acting as a photostabilizer to certain UV filters, TMBP and DMBP may offer additional photoprotection in a sunscreen formulation as a stand-alone UV filter. Finally, TMBP and DMBP could also find applications as molecular photon-to-heat converters

    Direct structural observation of ultrafast photoisomerization dynamics in sinapate esters

    Get PDF
    Sinapate esters have been extensively studied for their potential application in ‘nature-inspired’ photoprotection. There is general consensus that the relaxation mechanism of sinapate esters following photoexcitation with ultraviolet radiation is mediated by geometric isomerization. This has been largely inferred through indirect studies involving transient electronic absorption spectroscopy in conjunction with steady-state spectroscopies. However, to-date, there is no direct experimental evidence tracking the formation of the photoisomer in real-time. Using transient vibrational absorption spectroscopy, we report on the direct structural changes that occur upon photoexcitation, resulting in the photoisomer formation. Our mechanistic analysis predicts that, from the photoprepared ππ* state, internal conversion takes place through a conical intersection (CI) near the geometry of the initial isomer. Our calculations suggest that different CI topographies at relevant points on the seam of intersection may influence the isomerization yield. Altogether, we provide compelling evidence suggesting that a sinapate ester’s geometric isomerization can be a more complex dynamical process than originally thought

    An expeditive and green chemo-enzymatic route to diester sinapoyl- l -malate analogues: sustainable bioinspired and biosourced UV filters and molecular heaters †

    Get PDF
    Sinapoyl malate, naturally present in plants, has proved to be an exceptional UV filter and molecular heater for plants. Although there are nowadays industrially relevant sustainable synthetic routes to sinapoyl malate, its incorporation into certain cosmetic formulations, as well as its adsorption on plant leaves, is limited by its hydrophilicity. To overcome these obstacles, it is important to find a way to effectively control the hydrophilic–lipophilic balance of sinapoyl malate to make it readily compatible with the cosmetic formulations and stick on the waxy cuticle of leaves. To this end, herein, we describe a highly regioselective chemo-enzymatic synthesis of sinapoyl malate analogues possessing fatty aliphatic chains of variable length, enabling the lipophilicity of the compounds to be modulated. The potential toxicity (i.e., mutagenicity, carcinogenicity, endocrine disruption, acute and repeated-dose toxicity), bioaccumulation, persistence and biodegradability potential of these new analogues were evaluated in silico, along with the study of their transient absorption spectroscopy, their photostability as well as their photodegradation products

    New generation UV-A filters : understanding their photodynamics on a human skin mimic

    Get PDF
    The sparsity of efficient commercial ultraviolet-A (UV-A) filters is a major challenge toward developing effective broadband sunscreens with minimal human- and eco-toxicity. To combat this, we have designed a new class of Meldrum-based phenolic UV-A filters. We explore the ultrafast photodynamics of coumaryl Meldrum, CMe, and sinapyl Meldrum (SMe), both in an industry-standard emollient and on a synthetic skin mimic, using femtosecond transient electronic and vibrational absorption spectroscopies and computational simulations. Upon photoexcitation to the lowest excited singlet state (S1), these Meldrum-based phenolics undergo fast and efficient nonradiative decay to repopulate the electronic ground state (S0). We propose an initial ultrafast twisted intramolecular charge-transfer mechanism as these systems evolve out of the Franck–Condon region toward an S1/S0 conical intersection, followed by internal conversion to S0 and subsequent vibrational cooling. Importantly, we correlate these findings to their long-term photostability upon irradiation with a solar simulator and conclude that these molecules surpass the basic requirements of an industry-standard UV filter

    Towards developing novel and sustainable molecular light-to-heat converters

    Get PDF
    Light-to-heat conversion materials generate great interest due to their widespread applications, notable exemplars being solar energy harvesting and photoprotection. Another more recently identified potential application for such materials is in molecular heaters for agriculture, whose function is to protect crops from extreme cold weather and extend both the growing season and the geographic areas capable of supporting growth, all of which could help reduce food security challenges. To address this demand, a new series of phenolic-based barbituric absorbers of ultraviolet (UV) radiation has been designed and synthesised in a sustainable manner. The photophysics of these molecules has been studied in solution using femtosecond transient electronic and vibrational absorption spectroscopies, allied with computational simulations and their potential toxicity assessed by in silico studies. Following photoexcitation to the lowest singlet excited state, these barbituric absorbers repopulate the electronic ground state with high fidelity on an ultrafast time scale (within a few picoseconds). The energy relaxation pathway includes a twisted intramolecular charge-transfer state as the system evolves out of the Franck–Condon region, internal conversion to the ground electronic state, and subsequent vibrational cooling. These barbituric absorbers display promising light-to-heat conversion capabilities, are predicted to be non-toxic, and demand further study within neighbouring application-based fields
    corecore