9 research outputs found

    Constrained Statistical Modelling of Knee Flexion from Multi-Pose Magnetic Resonance Imaging

    Get PDF
    © 1982-2012 IEEE.Reconstruction of the anterior cruciate ligament (ACL) through arthroscopy is one of the most common procedures in orthopaedics. It requires accurate alignment and drilling of the tibial and femoral tunnels through which the ligament graft is attached. Although commercial computer-Assisted navigation systems exist to guide the placement of these tunnels, most of them are limited to a fixed pose without due consideration of dynamic factors involved in different knee flexion angles. This paper presents a new model for intraoperative guidance of arthroscopic ACL reconstruction with reduced error particularly in the ligament attachment area. The method uses 3D preoperative data at different flexion angles to build a subject-specific statistical model of knee pose. To circumvent the problem of limited training samples and ensure physically meaningful pose instantiation, homogeneous transformations between different poses and local-deformation finite element modelling are used to enlarge the training set. Subsequently, an anatomical geodesic flexion analysis is performed to extract the subject-specific flexion characteristics. The advantages of the method were also tested by detailed comparison to standard Principal Component Analysis (PCA), nonlinear PCA without training set enlargement, and other state-of-The-Art articulated joint modelling methods. The method yielded sub-millimetre accuracy, demonstrating its potential clinical value

    Evaluation of user-interfaces for controlling movements of virtual minimally invasive surgical instruments

    Get PDF
    Background: Recent tele-mentoring technologies for minimally invasive surgery (MIS) augments the operative field with movements of virtual surgical instruments as visual cues. The objective of this work is to assess different user-interfaces that effectively transfer mentor's hand gestures to the movements of virtual surgical instruments. Methods: A user study was conducted to assess three different user-interface devices (Oculus-Rift, SpaceMouse, Touch Haptic device) under various scenarios. The devices were integrated with a MIS tele-mentoring framework for control of both manual and robotic virtual surgical instruments. Results: The user study revealed that Oculus Rift is preferred during robotic scenarios, whereas the touch haptic device is more suitable during manual scenarios for tele-mentoring. Conclusion: A user-interface device in the form of a stylus controlled by fingers for pointing in 3D space is more suitable for manual MIS, whereas a user-interface that can be moved and oriented easily in 3D space by wrist motion is more suitable for robotic MIS

    Tele-Mentoring Using Augmented Reality: A Feasibility Study to Assess Teaching of Laparoscopic Suturing Skills

    No full text
    The work assesses the efficacy of computer based remote tele-mentoring system (i.e. when the mentor and mentee are physically separated) for teaching minimally invasive surgical skills. The visual cues used for tele-mentoring comprises real-time virtual surgical instruments' motion augmented onto the operative field and remotely controlled by the mentor. In the feasibility study, the surgical task of laparoscopic intracorporeal suturing was simulated among 18 mentor-mentee pairs. Three modes of mentoring were used. Mode-I included traditional learning using pre-recorded videos (in absence of a mentor). Mode-II used traditional in-person hands-on mentoring. In Mode-III, a tele-mentoring prototype was used that connected a mentee with a remote mentor. Error count and duration were recorded for a learning stage followed by a testing stage for the three modes. The results show the error count for Mode-III reduces significantly as compared to Mode-I in the learning stage. Similarly, the error count for Mode-III also reduces significantly as compared to Mode-I in the testing stage. The errors count for Mode-III were equivalent to that of Mode-II for both learning and teaching stages. Furthermore, in Mode-III the duration reduces from learning to testing stage exhibiting the learning effect. Thus, computer based remote tele-mentoring is effective and more convenient to demonstrate surgical sub-steps consisting of tool-tissue interaction facilitating surgical skill transfer

    A Platform Integrating Acquisition, Reconstruction, Visualization, and Manipulator Control Modules for MRI-Guided Interventions

    No full text
    This work presents a platform that integrates a customized MRI data acquisition scheme with reconstruction and three-dimensional (3D) visualization modules along with a module for controlling an MRI-compatible robotic device to facilitate the performance of robot-assisted, MRI-guided interventional procedures. Using dynamically-acquired MRI data, the computational framework of the platform generates and updates a 3D model representing the area of the procedure (AoP). To image structures of interest in the AoP that do not reside inside the same or parallel slices, the MRI acquisition scheme was modified to collect a multi-slice set of intraoblique to each other slices; which are termed composing slices. Moreover, this approach interleaves the collection of the composing slices so the same k-space segments of all slices are collected during similar time instances. This time matching of the k-space segments results in spatial matching of the imaged objects in the individual composing slices. The composing slices were used to generate and update the 3D model of the AoP. The MRI acquisition scheme was evaluated with computer simulations and experimental studies. Computer simulations demonstrated that k-space segmentation and time-matched interleaved acquisition of these segments provide spatial matching of the structures imaged with composing slices. Experimental studies used the platform to image the maneuvering of an MRI-compatible manipulator that carried tubing filled with MRI contrast agent. In vivo experimental studies to image the abdomen and contrast enhanced heart on free-breathing subjects without cardiac triggering demonstrated spatial matching of imaged anatomies in the composing planes. The described interventional MRI framework could assist in performing real-time MRI-guided interventions

    Evaluation of Interventional Planning Software Features for MR-guided Transrectal Prostate Biopsies

    No full text
    This work presents an interventional planning software to be used in conjunction with a robotic manipulator to perform transrectal MR guided prostate biopsies. The interventional software was designed taking in consideration a generic manipulator used under the two modes of operation: side-firing and end-firing of the biopsy needle. Studies were conducted with urologists using the software to plan virtual biopsies. The results show features of software relevant for operating efficiently under the two modes of operation

    Preliminary evaluation of robotic transrectal biopsy system on an interventional planning software

    No full text
    Prostate biopsy is considered as a definitive way for diagnosing prostate malignancies. Urologists are currently moving towards MR-guided prostate biopsies over conventional transrectal ultrasound-guided biopsies for prostate cancer detection. Recently, robotic systems have started to emerge as an assistance tool for urologists to perform MR-guided prostate biopsies. However, these robotic assistance systems are designed for a specific clinical environment and cannot be adapted to modifications or changes applied to the clinical setting and/or workflow. This work presents the preliminary design of a cable-driven manipulator developed to be used in both MR scanners and MR-ultrasound fusion systems. The proposed manipulator design and functionality are evaluated on a simulated virtual environment. The simulation is created on an in-house developed interventional planning software to evaluate the ergonomics and usability. The results show that urologists can benefit from the proposed design of the manipulator and planning software to accurately perform biopsies of targeted areas in the prostate
    corecore