1,020 research outputs found

    Clinical profile of patients of pyrexia with hepatic dysfunction in a tertiary care hospital in Southern Rajasthan region of India

    Get PDF
    Background: Pyrexia in association with hepatic dysfunction is commonly found in clinical practice with varied etiologies like malaria, dengue, typhoid, scrub typhus, viral hepatitis, etc. The liver is frequently involved in systemic infections, resulting in various types of abnormal liver function tests. It is very important to know the frequency and pattern of abnormal liver function tests in each infection for its appropriate management.Methods:  A complete data of all the patients admitted in medicine wards and medicine ICU from January to December 2018 were studied. One hundred and ten patients with fever with abnormal liver function tests were interviewed and presenting complaints were noted. Demographic data such as age and sex were noted. These patients underwent a thorough general physical examination and systemic examination. The findings were noted on a predesigned and pretested proforma. The selected patient underwent blood investigations related to liver functions.Results: Most of the patients were of age group of 21 to 50 years (65 patients), 67 patients (60.91%) were males and 43 (39.09%) were females. Malaria (25.45%) and dengue (26.36%) were major etiologies. Hepatomegaly (46.36%), icterus in (45.45%) and splenomegaly (42.73%) were most common clinical signs.Conclusions: Present study will help clinicians to identify etiological factors and clinical picture in patients of pyrexia with hepatic dysfunction

    Unions and ADR: The Relationship between Labor Unions and Workplace Dispute Resolution in U.S. Corporations

    Get PDF
    Published in cooperation with the American Bar Association Section of Dispute Resolutio

    Photochemical tissue bonding with chitosan adhesive films

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Photochemical tissue bonding (PTB) is a promising sutureless technique for tissue repair. PTB is often achieved by applying a solution of rose bengal (RB) between two tissue edges, which are irradiated by a green laser to crosslink collagen fibers with minimal heat production. In this study, RB has been incorporated in chitosan films to create a novel tissue adhesive that is laser-activated.</p> <p>Methods</p> <p>Adhesive films, based on chitosan and containing ~0.1 wt% RB were manufactured and bonded to calf intestine by a solid state laser (λ = 532 nm, Fluence~110 J/cm<sup>2</sup>, spot size~0.5 cm). A single-column tensiometer, interfaced with a personal computer, tested the bonding strength. K-type thermocouples recorded the temperature (T) at the adhesive-tissue interface during laser irradiation. Human fibroblasts were also seeded on the adhesive and cultured for 48 hours to assess cell growth.</p> <p>Results</p> <p>The RB-chitosan adhesive bonded firmly to the intestine with adhesion strength of 15 ± 2 kPa, (n = 31). The adhesion strength dropped to 0.5 ± 0.1 (n = 8) kPa when the laser was not applied to the adhesive. The average temperature of the adhesive increased from 26°C to 32°C during laser exposure. Fibroblasts grew confluent on the adhesive without morphological changes.</p> <p>Conclusion</p> <p>A new biocompatible chitosan adhesive has been developed that bonds photochemically to tissue with minimal temperature increase.</p

    High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    Full text link
    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number of measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (\sim 47\%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47\% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane is strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.Comment: 6 pages, 4 figure

    DROM: Enabling Efficient and Effortless Malleability for Resource Managers

    Get PDF
    In the design of future HPC systems, research in resource management is showing an increasing interest in a more dynamic control of the available resources. It has been proven that enabling the jobs to change the number of computing resources at run time, i.e. their malleability, can significantly improve HPC system performance. However, job schedulers and applications typically do not support malleability due to the common belief that it introduces additional programming complexity and performance impact. This paper presents DROM, an interface that provides efficient malleability with no effort for program developers. The running application is enabled to adapt the number of threads to the number of assigned computing resources in a completely transparent way to the user through the integration of DROM with standard programming models, such as OpenMP/OmpSs, and MPI. We designed the APIs to be easily used by any programming model, application and job scheduler or resource manager. Our experimental results from two realistic use cases analysis, based on malleability by reducing the number of cores a job is using per node and jobs co-allocation, show the potential of DROM for improving the performance of HPC systems. In particular, the workload of two MPI+OpenMP neuro-simulators are tested, reporting improvement in system metrics, such as total run time and average response time, up to 8% and 48%, respectively.This work is partially supported by the Span- ish Government through Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316-P project, by the Generalitat de Catalunya (contract 2017-SGR-1414) and from the European Union’s Horizon 2020 under grant agreement No 785907 (HBP SGA2)Peer ReviewedPostprint (author's final draft

    Preparation and characterization of Fe-doped TiO<SUB>2</SUB> powders for solar light response and photocatalytic applications

    Get PDF
    Different amounts of Fe-doped TiO2 (with 0.1 to 10 wt.% Fe) powders were prepared at temperatures in the range of 400 and 800 °C following a conventional co-precipitation technique and were thoroughly characterized by means of X-ray diffraction (XRD), Fourier-transform infrared (FT-IR), Fourier-transform Raman (FT-Raman), diffuse reflectance spectroscopy (DRS), BET surface area, zeta potential and flat band potential measurements. Photocatalytic ability of Fe-doped TiO2 powders was evaluated by means of methylene blue (MB) degradation experiments conducted under the irradiation of simulated solar light. Characterization results suggested that as a dopant Fe stabilized TiO2 in the form of anatase phase, reduced its band gap energy and adjusted its flat band potentials in such a way that these powders can be employed for photoelectrolysis of water into hydrogen and oxygen in photoelectrochemical (PEC) cells. The 0.1 wt.% Fe-doped TiO2 exhibited highest activity in the photocatalytic degradation of MB. The kinetic studies revealed that the MB degradation reaction follows the Langmuir-Hinshelwood first order reaction rate

    Optimal planning of hybrid energy conversion systems for annual energy cost minimization in Indian residential buildings

    Get PDF
    The increasing interest in renewables has encouraged power system planners to include the concept of hybrid energy systems in modern power industry. Besides, the modern power consumers are becoming more concerned about their energy bills which has led to the concept of hybrid energy management systems (HEMSs) for buildings to monitor, control and optimally manage energy consumptions without any waste. In this study, an optimal planning framework is proposed to determine optimal capacities and sharing of hybrid energy conversion systems (HECS) such as wind turbine, solar photovoltaic, battery energy storage and the utility grid. The objective is to maximize the net present value of the project/system which includes the cost of annual investment, operation and maintenance costs of HEMS expected to have incurred in the planning period. All the costs and parameters are considered in the Indian context, and Genetic Algorithm (GA) is adopted to solve this proposed planning framework. The simulation results obtained are compared with same obtained for conventional houses in India. The comparison shows that the proposed framework effectively reduces the electricity bills while improving its reliability

    Environmentally sound system for E-waste: Biotechnological perspectives

    Get PDF
    The rapid e-waste volume is generating globally. At the same time, different recycling technologies, mainly the mechanical and chemical methods well studied, while the biological method is the most promising approach. Therefore, this article provides a comprehensive information about extracting valuable metals from e-waste. In addition, this article outlines the process and key opportunity for extraction of metals, identifies some of the most critical challenges for e-waste environmentally sound management practices, and opinions on possible solutions for exiting challenges, and emphasis on importance of advanced recycling technologies that can be utilized, in order to minimize the environmental impact causes due to improper recycling of e-waste

    Phenotypic Data from Inbred Parents Can Improve Genomic Prediction in Pearl Millet Hybrids

    Get PDF
    Pearl millet is a non-model grain and fodder crop adapted to extremely hot and dry environments globally. In India, a great deal of public and private sectors’ investment has focused on developing pearl millet single cross hybrids based on the cytoplasmic-genetic male sterility (CMS) system, while in Africa most pearl millet production relies on open pollinated varieties. Pearl millet lines were phenotyped for both the inbred parents and hybrids stage. Many breeding efforts focus on phenotypic selection of inbred parents to generate improved parental lines and hybrids. This study evaluated two genotyping techniques and four genomic selection schemes in pearl millet. Despite the fact that 6· more sequencing data were generated per sample for RAD-seq than for tGBS, tGBS yielded more than 2· as many informative SNPs (defined as those having MAF \u3e 0.05) than RAD-seq. A genomic prediction scheme utilizing only data from hybrids generated prediction accuracies (median) ranging from 0.73-0.74 (1000- grain weight), 0.87-0.89 (days to flowering time), 0.48-0.51 (grain yield) and 0.72-0.73 (plant height). For traits with little to no heterosis, hybrid only and hybrid/inbred prediction schemes performed almost equivalently. For traits with significant mid-parent heterosis, the direct inclusion of phenotypic data from inbred lines significantly (P \u3c 0.05) reduced prediction accuracy when all lines were analyzed together. However, when inbreds and hybrid trait values were both scored relative to the mean trait values for the respective populations, the inclusion of inbred phenotypic datasets moderately improved genomic predictions of the hybrid genomic estimated breeding values. Here we show that modern approaches to genotyping by sequencing can enable genomic selection in pearl millet. While historical pearl millet breeding records include a wealth of phenotypic data from inbred lines, we demonstrate that the naive incorporation of this data into a hybrid breeding program can reduce prediction accuracy, while controlling for the effects of heterosis per se allowed inbred genotype and trait data to improve the accuracy of genomic estimated breeding values for pearl millet hybrids

    Towards defining heterotic gene pools using SSR markers in pearl millet [Pennisetum glaucum (L.) R. Br.]

    Get PDF
    Pearl millet is a climate resilient crop and the most widely grown millet worldwide. In a maiden attempt to identify potential heterotic groups for grain yield in pearl millet, a total of 88 polymorphic SSR markers were used to genotype 343 hybrid parental lines of pearl millet. The SSR markers generated a total of 532 alleles with a mean value of 6.05 alleles per locus, mean gene diversity of 0.55, and an average PIC of 0.50. Out of 532 alleles, 443 (83.27%) alleles were contributed by B- lines with a mean of 5.03 alleles per locus. R- lines contributed 476 alleles (89.47%) with a mean of 5.41, while 441 (82.89%) alleles were shared commonly between B- and R- lines. The gene diversity and PIC were high among R- lines (0.55 and 0.50) than B- lines (0.49 and 0.44) revealed that R- lines were more diverse than B- lines. The unweighted neighbor-joining tree based on simple matching dissimilarity matrix obtained from SSR data clearly differentiated B- lines into 10 sub-clusters (B1, B2, B3, B4, B5, B6, B7, B8, B9 and B10), and Rlines into 11 sub-clusters (R1, R2, R3, R4, R5, R6, R7, R8, R9, R10 and R11). The parents, three checks and 99 hybrids generated by crossing between representative lines of each of the B- cluster with that of each of the R- cluster were evaluated in line ? tester design over three environments. Based on pooled mean performance, the cross combinations generated between clusters B1 and R3, B2 and R4, B3 and R5, B4 and undetermined cluster, B5 and 11R, B6 and R3, B8 and R4, B9 and R7 and B10 and R5 had shown higher grain yield per plant compared to their counterparts. Based on per se performance, high sca effects and standard heterosis over superior check, F1s generated from crosses between representatives of groups B3 and B10 with representative of group R5 resulted in best heterotic combinations for grain yield. These represent putative heterotic gene pools in pearl millet.publishersversionPeer reviewe
    corecore