16 research outputs found
STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF TYPE III AND TYPE IV SECRETION SYSTEM PROTEINS
Ph.DDOCTOR OF PHILOSOPH
Recommended from our members
Importin-9 wraps around the H2A-H2B core to act as nuclear importer and histone chaperone.
We report the crystal structure of nuclear import receptor Importin-9 bound to its cargo, the histones H2A-H2B. Importin-9 wraps around the core, globular region of H2A-H2B to form an extensive interface. The nature of this interface coupled with quantitative analysis of deletion mutants of H2A-H2B suggests that the NLS-like sequences in the H2A-H2B tails play a minor role in import. Importin-9•H2A-H2B is reminiscent of interactions between histones and histone chaperones in that it precludes H2A-H2B interactions with DNA and H3-H4 as seen in the nucleosome. Like many histone chaperones, which prevent inappropriate non-nucleosomal interactions, Importin-9 also sequesters H2A-H2B from DNA. Importin-9 appears to act as a storage chaperone for H2A-H2B while escorting it to the nucleus. Surprisingly, RanGTP does not dissociate Importin-9•H2A-H2B but assembles into a RanGTP•Importin-9•H2A-H2B complex. The presence of Ran in the complex, however, modulates Imp9-H2A-H2B interactions to facilitate its dissociation by DNA and assembly into a nucleosome
Dimerization of VirD2 Binding Protein Is Essential for Agrobacterium Induced Tumor Formation in Plants
10.1371/journal.ppat.1003948PLoS Pathogens103
Recommended from our members
Structures of Tetrahymena’s respiratory chain reveal the diversity of eukaryotic core metabolism
Respiration is a core biological energy-converting process whose last steps are carried out by a chain of multisubunit complexes in the inner mitochondrial membrane. To probe the functional and structural diversity of eukaryotic respiration, we examined the respiratory chain of the ciliate Tetrahymena thermophila (Tt). Using cryo-electron microscopy on a mixed sample, we solved structures of a supercomplex between Tt complex I (Tt-CI) and Tt-CIII2 (Tt-SC I+III2) and a structure of Tt-CIV2. Tt-SC I+III2 (~2.3 megadaltons) is a curved assembly with structural and functional symmetry breaking. Tt-CIV2 is a ~2.7-megadalton dimer with more than 50 subunits per protomer, including mitochondrial carriers and a TIM83-TIM133-like domain. Our structural and functional study of the T. thermophila respiratory chain reveals divergence in key components of eukaryotic respiration, thereby expanding our understanding of core metabolism
The Mysterious Multitude: Structural Perspective on the Accessory Subunits of Respiratory Complex I
Complex I (CI) is the largest protein complex in the mitochondrial oxidative phosphorylation electron transport chain of the inner mitochondrial membrane and plays a key role in the transport of electrons from reduced substrates to molecular oxygen. CI is composed of 14 core subunits that are conserved across species and an increasing number of accessory subunits from bacteria to mammals. The fact that adding accessory subunits incurs costs of protein production and import suggests that these subunits play important physiological roles. Accordingly, knockout studies have demonstrated that accessory subunits are essential for CI assembly and function. Furthermore, clinical studies have shown that amino acid substitutions in accessory subunits lead to several debilitating and fatal CI deficiencies. Nevertheless, the specific roles of CI's accessory subunits have remained mysterious. In this review, we explore the possible roles of each of mammalian CI's 31 accessory subunits by integrating recent high-resolution CI structures with knockout, assembly, and clinical studies. Thus, we develop a framework of experimentally testable hypotheses for the function of the accessory subunits. We believe that this framework will provide inroads towards the complete understanding of mitochondrial CI physiology and help to develop strategies for the treatment of CI deficiencies
Recommended from our members
Resting mitochondrial complex I from Drosophila melanogaster adopts a helix-locked state
Respiratory complex I is a proton-pumping oxidoreductase key to bioenergetic metabolism. Biochemical studies have found a divide in the behavior of complex I in metazoans that aligns with the evolutionary split between Protostomia and Deuterostomia. Complex I from Deuterostomia including mammals can adopt a biochemically defined off-pathway 'deactive' state, whereas complex I from Protostomia cannot. The presence of off-pathway states complicates the interpretation of structural results and has led to considerable mechanistic debate. Here, we report the structure of mitochondrial complex I from the thoracic muscles of the model protostome Drosophila melanogaster. We show that although D. melanogaster complex I (Dm-CI) does not have a NEM-sensitive deactive state, it does show slow activation kinetics indicative of an off-pathway resting state. The resting-state structure of Dm-CI from the thoracic muscle reveals multiple conformations. We identify a helix-locked state in which an N-terminal α-helix on the NDUFS4 subunit wedges between the peripheral and membrane arms. Comparison of the Dm-CI structure and conformational states to those observed in bacteria, yeast, and mammals provides insight into the roles of subunits across organisms, explains why the Dm-CI off-pathway resting state is NEM insensitive, and raises questions regarding current mechanistic models of complex I turnover
Crystallographic statistics and refinement details.
#<p>SAD – Single-wavelength anomalous diffraction.</p>a<p>R<sub>sym</sub> = Σ |I<sub>i</sub>−<i>|/Σ|I<sub>i</sub>| where I<sub>i</sub> is the intensity of the i<sup>th</sup> measurement, and <i> is the mean intensity for that reflection.</i></i></p><i><i>b<p>R<sub>work</sub> = Σ |F<sub>obs</sub>−F<sub>calc</sub>|/Σ|F<sub>obs</sub>| where F<sub>calc</sub> and F<sub>obs</sub> are the calculated and observed structure factor amplitudes, respectively.</p>c<p>R<sub>free</sub> = as for R<sub>work</sub>, but for 10.0% of the total reflections chosen at random and omitted from refinement.</p><p>Individual B-factor refinement was carried out.</p><p>*Values in parentheses are for highest resolution bin.</p></i></i
Pull down assays.
<p>(A) MBP/MBP-VirD2 bound to amylose resin was incubated overnight with 6His-VBP, followed by washes. The final beads were resolved on a 12.5% SDS gel, transferred to a PVDF membrane and treated with anti-His monoclonal antibody (1∶10,000). 6His-VBP was loaded into the lane 5 as a reference. The VBP species used include: lane 1. Wild-type (WT) VBP; lane 2.VBP D173N; lane 3.VBP K184D; lane 4. VBP N186D; lane 5. VBP wild-type loaded on to the gel for reference; .lane 6. VBP passed through MBP bound to amylose beads. (B) 6His-VBP/substituted 6His-VBP bound to Ni-NTA metal affinity resin was incubated with freshly prepared <i>A. tumefaciens</i> crude extracts. After incubation at 4°C for 1 h, the resin was washed four times. The bound complex was eluted with 250 mM imidazole. The eluted protein was resolved on SDS-Gel, transferred to a PVDF membrane and the protein was detected using protein (VirD2 and VirD4 CP) specific monoclonal antibodies. The VBP species used include: lane 1. Crude extract loaded for reference; lane 2. WT VBP; lane 3.VBP D173N; lane 4.VBP K184D; lane 5. VBP N186D.</p