8 research outputs found

    Inhibition of Soluble Epoxide Hydrolase Limits Mitochondrial Damage and Preserves Function Following Ischemic Injury

    Get PDF
    Aims: Myocardial ischemia can result in marked mitochondrial damage leading to cardiac dysfunction, as such identifying novel mechanisms to limit mitochondrial injury is important. This study investigated the hypothesis that inhibiting soluble epoxide hydrolase (sEH), responsible for converting epoxyeicosatrienoic acids to dihydroxyeicosatrienoic acids protects mitochondrial from injury caused by myocardial infarction. Methods: sEH null and WT littermate mice were subjected to surgical occlusion of the left anterior descending (LAD) artery or sham operation. A parallel group of WT mice received an sEH inhibitor, trans-4-[4-(3-adamantan-1-y1-ureido)-cyclohexyloxy]-benzoic acid (tAUCB; 10 mg/L) or vehicle in the drinking water 4 days prior and 7 days post-MI. Cardiac function was assessed by echocardiography prior- and 7-days post-surgery. Heart tissues were dissected into infarct, peri-, and non-infarct regions to assess ultrastructure by electron microscopy. Complexes I, II, IV, citrate synthase, PI3K activities, and mitochondrial respiration were assessed in non-infarct regions. Isolated working hearts were used to measure the rates of glucose and palmitate oxidation. Results: Echocardiography revealed that tAUCB treatment or sEH deficiency significantly improved systolic and diastolic function post-MI compared to controls. Reduced infarct expansion and less adverse cardiac remodeling were observed in tAUCB-treated and sEH null groups. EM data demonstrated mitochondrial ultrastructure damage occurred in infarct and peri-infarct regions but not in non-infarct regions. Inhibition of sEH resulted in significant improvements in mitochondrial respiration, ATP content, mitochondrial enzymatic activities and restored insulin sensitivity and PI3K activity. Conclusion: Inhibition or genetic deletion of sEH protects against long-term ischemia by preserving cardiac function and maintaining mitochondrial efficiency

    Antagonism of angiotensin 1-7 prevents the therapeutic effects of recombinant human ACE2

    Get PDF
    Activation of the angiotensin 1-7/Mas receptor (MasR) axis counteracts angiotensin II (Ang II)-mediated cardiovascular disease. Recombinant human angiotensin-converting enzyme 2 (rhACE2) generates Ang 1-7 from Ang II. We hypothesized that the therapeutic effects of rhACE2 are dependent on Ang 1-7 action. Wild type male C57BL/6 mice (10-12 weeks old) were infused with Ang II (1.5 mg/kg/d) and treated with rhACE2 (2 mg/kg/d). The Ang 1-7 antagonist, A779 (200 ng/kg/min), was administered to a parallel group of mice. rhACE2 prevented Ang II-induced hypertrophy and diastolic dysfunction while A779 prevented these beneficial effects and precipitated systolic dysfunction. rhACE2 effectively antagonized Ang II-mediated myocardial fibrosis which was dependent on the action of Ang 1-7. Myocardial oxidative stress and matrix metalloproteinase 2 activity was further increased by Ang 1-7 inhibition even in the presence of rhACE2. Activation of Akt and endothelial nitric oxide synthase (eNOS) by rhACE2 were suppressed by the antagonism of Ang 1-7 while the activation of pathological signaling pathways was maintained. Blocking Ang 1-7 action prevents the therapeutic effects of rhACE2 in the setting of elevated Ang II culminating in systolic dysfunction. These results highlight a key cardioprotective role of Ang 1-7, and increased Ang 1-7 action represents a potential therapeutic strategy for cardiovascular diseases. KEY MESSAGES: Activation of the renin-angiotensin system (RAS) plays a key pathogenic role in cardiovascular disease. ACE2, a monocarboxypeptidase, negatively regulates pathological effects of Ang II. Antagonizing Ang 1-7 prevents the therapeutic effects of recombinant human ACE2. Our results highlight a key protective role of Ang 1-7 in cardiovascular disease

    Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease

    No full text

    Mechanisms and Management of Thyroid Disease and Atrial Fibrillation: Impact of Atrial Electrical Remodeling and Cardiac Fibrosis

    No full text
    Atrial fibrillation (AF) is the most common cardiac arrhythmia associated with increased cardiovascular morbidity and mortality. The pathophysiology of AF is characterized by electrical and structural remodeling occurring in the atrial myocardium. As a source of production of various hormones such as angiotensin-2, calcitonin, and atrial natriuretic peptide, the atria are a target for endocrine regulation. Studies have shown that disorders associated with endocrine dysregulation are potential underlying causes of AF. The thyroid gland is an endocrine organ that secretes three hormones: triiodothyronine (T3), thyroxine (T4) and calcitonin. Thyroid dysregulation affects the cardiovascular system. Although there is a well-established relationship between thyroid disease (especially hyperthyroidism) and AF, the underlying biochemical mechanisms leading to atrial fibrosis and atrial arrhythmias are poorly understood in thyrotoxicosis. Various animal models and cellular studies demonstrated that thyroid hormones are involved in promoting AF substrate. This review explores the recent clinical and experimental evidence of the association between thyroid disease and AF. We highlight the current knowledge on the potential mechanisms underlying the pathophysiological impact of thyroid hormones T3 and T4 dysregulation, in the development of the atrial arrhythmogenic substrate. Finally, we review the available therapeutic strategies to treat AF in the context of thyroid disease

    Paracrine signalling by cardiac calcitonin controls atrial fibrogenesis and arrhythmia

    No full text
    Atrial fibrillation, the most common cardiac arrhythmia, is an important contributor to mortality and morbidity, and particularly to the risk of stroke in humans1. Atrial-tissue fibrosis is a central pathophysiological feature of atrial fibrillation that also hampers its treatment; the underlying molecular mechanisms are poorly understood and warrant investigation given the inadequacy of present therapies2. Here we show that calcitonin, a hormone product of the thyroid gland involved in bone metabolism3, is also produced by atrial cardiomyocytes in substantial quantities and acts as a paracrine signal that affects neighbouring collagen-producing fibroblasts to control their proliferation and secretion of extracellular matrix proteins. Global disruption of calcitonin receptor signalling in mice causes atrial fibrosis and increases susceptibility to atrial fibrillation. In mice in which liver kinase B1 is knocked down specifically in the atria, atrial-specific knockdown of calcitonin promotes atrial fibrosis and increases and prolongs spontaneous episodes of atrial fibrillation, whereas atrial-specific overexpression of calcitonin prevents both atrial fibrosis and fibrillation. Human patients with persistent atrial fibrillation show sixfold lower levels of myocardial calcitonin compared to control individuals with normal heart rhythm, with loss of calcitonin receptors in the fibroblast membrane. Although transcriptome analysis of human atrial fibroblasts reveals little change after exposure to calcitonin, proteomic analysis shows extensive alterations in extracellular matrix proteins and pathways related to fibrogenesis, infection and immune responses, and transcriptional regulation. Strategies to restore disrupted myocardial calcitonin signalling thus may offer therapeutic avenues for patients with atrial fibrillation
    corecore