48 research outputs found

    Impact of AVHRR channel 3b noise on climate data records: filtering method applied to the CM SAF CLARA-A2 data record

    Get PDF
    A method for reducing the impact of noise in the 3.7 micron spectral channel in climate data records derived from coarse resolution (4 km) global measurements from the Advanced Very High Resolution Radiometer (AVHRR) data is presented. A dynamic size-varying median filter is applied to measurements guided by measured noise levels and scene temperatures for individual AVHRR sensors on historic National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites in the period 1982–2001. The method was used in the preparation of the CM SAF cLoud, Albedo and surface RAdiation dataset from AVHRR data—Second Edition (CLARA-A2), a cloud climate data record produced by the EUMETSAT Satellite Application Facility for Climate Monitoring (CM SAF), as well as in the preparation of the corresponding AVHRR-based datasets produced by the European Space Agency (ESA) Climate Change Initiative (CCI) project ESA-CLOUD-CCI. The impact of the noise filter was equivalent to removing an artificial decreasing trend in global cloud cover of 1–2% per decade in the studied period, mainly explained by the very high noise levels experienced in data from the first satellites in the series (NOAA-7 and NOAA-9). View Full-Tex

    Correcting orbital drift signal in the time series of AVHRR derived convective cloud fraction using rotated empirical orthogonal function: Correcting orbital drift signal in the time series of AVHRR derivedconvective cloud fraction using rotated empirical orthogonal function

    Get PDF
    The Advanced Very High Resolution Radiometer (AVHRR) instruments onboard the series of National Oceanic and Atmospheric Administration (NOAA) satellites offer the longest available meteorological data records from space. These satellites have drifted in orbit resulting in shifts in the local time sampling during the life span of the sensors onboard. Depending upon the amplitude of the diurnal cycle of the geophysical parameters derived, orbital drift may cause spurious trends in their time series. We investigate tropical deep convective clouds, which show pronounced diurnal cycle amplitude, to estimate an upper bound of the impact of orbital drift on their time series. We carry out a rotated empirical orthogonal function analysis (REOF) and show that the REOFs are useful in delineating orbital drift signal and, more importantly, in subtracting this signal in the time series of convective cloud amount. These results will help facilitate the derivation of homogenized data series of cloud amount from NOAA satellite sensors and ultimately analyzing trends from them. However, we suggest detailed comparison of various methods and rigorous testing thereof applying final orbital drift corrections

    A climatological perspective of deep convection penetrating the TTL during the Indian summer monsoon from the AVHRR and MODIS instruments

    Get PDF
    The impact of very deep convection on the water budget and thermal structure of the tropical tropopause layer is still not well quantified, not least because of limitations imposed by the available observation techniques. Here, we present detailed analysis of the climatology of the cloud top brightness temperatures as indicators of deep convection during the Indian summer monsoon, and the variations therein due to active and break periods. We make use of the recently newly processed data from the Advanced Very High Resolution Radiometer (AVHRR) at a nominal spatial resolution of 4 km. Using temperature thresholds from the Atmospheric Infrared Sounder (AIRS), the AVHRR brightness temperatures are converted to climatological mean (2003-2008) maps of cloud amounts at 200, 150 and 100 hPa. Further, we relate the brightness temperatures to the level of zero radiative heating, which may allow a coarse identification of convective detrainment that will subsequently ascend into the stratosphere. The AVHRR data for the period 1982-2006 are used to document the differences in deep convection between active and break conditions of the monsoon. The analysis of AVHRR data is complemented with cloud top pressure and optical depth statistics (for the period 2003-2008) from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua satellite. Generally, the two sensors provide a very similar description of deep convective clouds. Our analysis shows that most of the deep convection occurs over the Bay of Bengal and central northeast India. Very deep convection over the Tibetan plateau is comparatively weak, and may play only a secondary role in troposphere-to-stratosphere transport. The deep convection over the Indian monsoon region is most frequent in July/August, but the very highest convection (coldest tops, penetrating well into the TTL) occurs in May/June. Large variability in convection reaching the TTL is due to monsoon break/active periods. During the monsoon break period, deep convection reaching the TTL is almost entirely absent in the western part of the study area (i.e. 60 E-75 E), while the distribution over the Bay of Bengal and the Tibetan Plateau is less affected. Although the active conditions occur less frequently than the break conditions, they may have a larger bearing on the composition of the TTL within the monsoonal anticyclone, and tracer transport into the stratosphere because of deep convection occurring over anthropogenically more polluted regions

    The large-scale spatio-temporal variability of precipitation over Sweden observed from the weather radar network

    Get PDF
    Using measurements from the national network of 12 weather radar stations for the 11-year period 2000-2010, we investigate the large-scale spatio-temporal variability of precipitation over Sweden. These statistics provide useful information to evaluate regional climate models as well as for hydrology and energy applications. A strict quality control is applied to filter out noise and artifacts from the radar data. We focus on investigating four distinct aspects: the diurnal cycle of precipitation and its seasonality, the dominant timescale (diurnal versus seasonal) of variability, precipitation response to different wind directions, and the correlation of precipitation events with the North Atlantic Oscillation (NAO) and the Arctic Oscillation (AO). When classified based on their intensity, moderate-to high-intensity events (precipitation >0.34 mm/3 h) peak distinctly during late afternoon over the majority of radar stations in summer and during late night or early morning in winter. Precipitation variability is highest over the southwestern parts of Sweden. It is shown that the high-intensity events (precipitation >1.7 mm/3 h) are positively correlated with NAO and AO (esp. over northern Sweden), while the low intensity events are negatively correlated (esp. over southeastern parts). It is further observed that southeasterly winds often lead to intense precipitation events over central and northern Sweden, while southwesterly winds contribute most to the total accumulated precipitation for all radar stations. Apart from its operational applications, the present study demonstrates the potential of the weather radar data set for studying climatic features of precipitation over Sweden

    Typical meteorological conditions associated with extreme nitrogen dioxide (NO2) pollution events over Scandinavia

    No full text
    Characterizing typical meteorological conditions associated with extreme pollution events helps to better understand the role of local meteorology in governing the transport and distribution of pollutants in the atmosphere. The knowledge of their co-variability could further help to evaluate and constrain chemistry transport models. Hence, in this study, we investigate the statistical linkages between extreme nitrogen dioxide (NO<sub>2</sub>) pollution events and meteorology over Scandinavia using observational and reanalysis data. It is observed that the south-westerly winds dominated during extreme events, accounting for 50&ndash;65&thinsp;% of the total events depending on the season, while the second largest annual occurrence was from south-easterly winds, accounting for 17&thinsp;% of total events. The specific humidity anomalies showed an influx of warmer and moisture-laden air masses over Scandinavia in the free troposphere. Two distinct modes in the persistency of circulation patterns are observed. The first mode lasts for 1&ndash;2 days, dominated by south-easterly winds that prevailed during 78&thinsp;% of total extreme events in that mode, while the second mode lasted for 3&ndash;5 days, dominated by south-westerly winds that prevailed during 86&thinsp;% of the events. The combined analysis of circulation patterns, their persistency, and associated changes in humidity and clouds suggests that NO<sub>2</sub> extreme events over Scandinavia occur mainly due to long-range transport from the southern latitudes

    A daytime climatological distribution of high opaque ice cloud classes over the Indian summer monsoon region observed from 25-year AVHRR data

    Get PDF
    A daytime climatological spatio-temporal distribution of high opaque ice cloud (HOIC) classes over the Indian subcontinent (0-40 degrees N, 60 degrees E-100 degrees E) is presented using 25-year data from the Advanced Very High Resolution Radiometers (AVHRRs) for the summer monsoon months. The HOICs are important for regional radiative balance, precipitation and troposphere-stratosphere exchange. In this study, HOICs are sub-divided into three classes based on their cloud top brightness temperatures (BT). Class I represents very deep convection (BT &lt; 220 K). Class II represents deep convection (220 K &lt;=BT &lt; 233 K) and Class III background convection (233 K &lt;=BT &lt; 253 K). Apart from presenting finest spatial resolution (0.1x0.1 degrees) and long-term climatology of such cloud classes from AVHRRs to date, this study for the first time illustrates on (1) how these three cloud classes are climatologically distributed during monsoon months, and (2) how their distribution changes during active and break monsoon conditions. It is also investigated that how many deep convective clouds reach the tropopause layer during individual monsoon months. It is seen that Class I and Class II clouds dominate the Indian subcontinent during monsoon. The movement of monsoon over continent is very well reflected in these cloud classes. During monsoon breaks strong suppression of convective activity is observed over the Arabian Sea and the western coast of India. On the other hand, the presence of such convective activity is crucial for active monsoon conditions and all-India rainfall. It is found that a significant fraction of HOICs (3-5%) reach the tropopause layer over the Bay of Bengal during June and over the north and northeast India during July and August. Many cases are observed when clouds penetrate the tropopause layer and reach the lower stratosphere. Such cases mostly occur during June compared to the other months

    Sensitivity of free tropospheric carbon monoxide to atmospheric weather states and their persistency : an observational assessment over the Nordic countries

    Get PDF
    Among various factors that influence the long-range transport of pollutants in the free troposphere (FT), the prevailing atmospheric weather states probably play the most important role in governing characteristics and efficacy of such transport. The weather states, such as a particular wind pattern, cyclonic or anticyclonic conditions, and their degree of persistency determine the spatio-temporal distribution and the final fate of the pollutants. This is especially true in the case of Nordic countries, where baroclinic disturbances and associated weather fronts primarily regulate local meteorology, in contrast to the lower latitudes where a convective paradigm plays a similarly important role. Furthermore, the long-range transport of pollutants in the FT has significant contribution to the total column burden over the Nordic countries. However, there is insufficient knowledge on the large-scale co-variability of pollutants in the FT and atmospheric weather states based solely on observational data over this region. The present study attempts to quantify and understand this statistical co-variability while providing relevant meteorological background. To that end, we select eight weather states that predominantly occur over the Nordic countries and three periods of their persistency (3 days, 5 days, and 7 days), thus providing in total 24 cases to investigate sensitivity of free tropospheric carbon monoxide, an ideal tracer for studying pollutant transport, to these selected weather states. The eight states include four dominant wind directions (namely, NW, NE, SE and SW), cyclonic and anticyclonic conditions, and the enhanced positive and negative phases of the North Atlantic Oscillation (NAO). For our sensitivity analysis, we use recently released Version 6 retrievals of CO at 500 hPa from the Atmospheric Infrared Sounder (AIRS) onboard Aqua satellite covering the 11-year period from September 2002 through August 2013 and winds from the ECMWF's ERA-Interim project to classify weather states for the same 11-year period. We show that, among the various weather states studied here, southeasterly winds lead to highest observed CO anomalies (up to +8%) over the Nordic countries while transporting pollution from the central and eastern parts of Europe. The second (up to +4%) and third highest (up to +2.5%) CO anomalies are observed when winds are northwesterly (facilitating inter-continental transport from polluted North American regions) and during the enhanced positive phase of the NAO respectively. Higher than normal CO anomalies are observed during anticyclonic conditions (up to +1%) compared to cyclonic conditions. The cleanest conditions are observed when winds are northeasterly and during the enhanced negative phases of the NAO, when relatively clean Arctic air masses are transported over the Nordic regions in the both cases. In the case of nearly all weather states, the CO anomalies consistently continue to increase or decrease as the degree of persistency of a weather state is increased. The results of this sensitivity study further provide an observational basis for the process-oriented evaluation of chemistry transport models, especially with regard to the representation of large-scale coupling of chemistry and local weather states and its role in the long-range transport of pollutants in such models

    Inter-Comparison and Evaluation of the Four Longest Satellite-Derived Cloud Climate Data Records : CLARA-A2, ESA Cloud CCI V3, ISCCP-HGM, and PATMOS-x

    No full text
    Results from four global cloud climate data records (ISCCP-HGM, ESA Cloud CCI V3, CLARA-A2 and PATMOS-x) have been inter-compared in global time series plots, in global maps and in zonal region plots covering the period in common, 1984&ndash;2009. The investigated cloud parameters were total cloud fraction and cloud top pressure. Averaged seasonal cycles of cloud cover, as observed by the CALIPSO-CALIOP sensor over the 2007&ndash;2015 period, were also used as an additional independent and high-quality reference for the study of global cloud cover. All CDRs show good agreement on global cloud amounts (~65%) and also a weak negative trend (0.5&ndash;1.9% per decade) over the period of investigation. Deviations between the CDRs are seen especially over the southern mid-latitude region and over the poles. Particularly good results are shown by PATMOS-x and by ESA Cloud CCI V3 when compared to the CALIPSO-CALIOP reference. Results for cloud top pressure show large differences (~60 hPa) between ISCCP-HGM and the other CDRs for the global mean. The two CDR groups show also opposite signs in the trend over the period

    A global survey of aerosol-liquid water cloud overlap based on four years of CALIPSO-CALIOP data

    No full text
    Simulating the radiative impacts of aerosols located above liquid water clouds presents a significant challenge. In particular, absorbing aerosols, such as smoke, may have significant impact in such situations and even change the sign of net radiative forcing. It is not possible to reliably obtain information on such overlap events from existing passive satellite sensors. However, the CALIOP instrument onboard NASA's CALIPSO satellite allows us to examine these events with unprecedented accuracy. Using four years of collocated CALIPSO 5 km Aerosol and Cloud Layer Version 3 Products (June 2006 May 2010), we quantify, for the first time, the characteristics of overlapping aerosol and water cloud layers globally. We investigate seasonal variability in these characteristics over six latitude bands to understand the hemispheric differences when all aerosol types are included in the analysis (the AAO case). We also investigate frequency of smoke aerosol-cloud overlap (the SAO case). Globally, the frequency is highest during the JJA months in the AAO case, while for the SAO case, it is highest in the SON months. The seasonal mean overlap frequency can regionally exceed 20% in the AAO case and 10% in the SAO case. In about 5-10% cases the vertical distance between aerosol and cloud layers is less than 100 m, while about in 45-60% cases it less than a kilometer in the annual means for different latitudinal bands. In about 70-80% cases, aerosol layers are less than a kilometer thick, while in about 18-22% cases they are 1-2 km thick. The frequency of aerosol layers 2-3 km thick is about 4-5% in the tropical belts during overlap events. Over the regions where high aerosol loadings are present, the overlap frequency can be up to 50% higher when quality criteria on aerosol/cloud feature detection are relaxed. Over the polar regions, more than 50% of the overlapping aerosol layers have optical thickness less than 0.02, but the contribution from the relatively optically thicker aerosol layers increases towards the equatorial regions in both hemispheres. The results suggest that the frequency of occurrence of overlap events is far from being negligible globally
    corecore