9 research outputs found

    Mechanisms of T cell organotropism

    Get PDF
    F.M.M.-B. is supported by the British Heart Foundation, the Medical Research Council of the UK and the Gates Foundation

    Necrotic platelets provide a procoagulant surface during thrombosis

    No full text
    A subpopulation of platelets fulfills a procoagulant role in hemostasis and thrombosis by enabling the thrombin burst required for fibrin formation and clot stability at the site of vascular injury. Excess procoagulant activity is linked with pathological thrombosis. The identity of the procoagulant platelet has been elusive. The cell death marker 4-[N-(S-glutathionylacetyl)amino]phenylarsonous acid (GSAO) rapidly enters a subpopulation of agonist-stimulated platelets via an organic anion-transporting polypeptide and is retained in the cytosol through covalent reaction with protein dithiols. Labeling with GSAO, together with exposure of P-selectin, distinguishes necrotic from apoptotic platelets and correlates with procoagulant potential. GSAO+ platelets form in occluding murine thrombi after ferric chloride injury and are attenuated withmegakaryocyte-directed deletionof the cyclophilin D gene. These platelets forma procoagulant surface, supporting fibrin formation, and reduction in GSAO+ platelets is associated with reduction in platelet thrombus size and fibrin formation. Analysis of platelets from human subjects receiving aspirin therapy indicates that these procoagulant platelets form despite aspirin therapy, but are attenuated by inhibition of the necrosis pathway. These findings indicate that the major subpopulation of platelets involved in fibrin formation are formed via regulated necrosis involving cyclophilin D, and that they may be targeted independent of platelet activation

    Rapid histamine-induced neutrophil recruitment is sphingosine kinase-1 dependent

    No full text
    Leukocyte recruitment to sites of inflammation is critical for the development of acute allergic responses. Rapid P-selectin up-regulation by endothelial cells is a key promoter of leukocyte infiltration in response to mediators such as histamine. However, the mechanisms underpinning this process are still incompletely understood. We examined the role of the sphingosine kinase/sphingosine-1-phosphate (SK/S1P) pathway and showed that in human umbilical vein endothelial cells, histamine rapidly activates SK in an extracellular signal-regulated kinase (ERK) 1/2-dependent manner, concurrent with the induction of P-selectin expression. Histamine activated both SK-1 and SK-2 isoforms; inhibition of SK-1, but not SK-2, attenuated histamine-induced P-selectin up-regulation and neutrophil rolling in vitro. S1P receptor antagonists failed to prevent histamine-induced P-selectin expression, and exogenous S1P did not increase P-selectin expression, suggesting that S1P cell surface receptors are not involved in this process. Finally, the role of both SK-1 and SK-2 in histamine-induced leukocyte rolling in vivo was assessed using pharmacological and genetic methods. Consistent with the in vitro findings, mice pretreated with either sphingosine kinase inhibitor or fingolimod (FTY720) significantly attenuated histamine-induced leukocyte rolling in the cremaster muscle. Similarly, Sphk1(-/-) but not Sphk2(-/-) mice exhibited reduced histamine-induced leukocyte rolling. These findings demonstrate a key role for SK-1 in histamine-induced rapid P-selectin up-regulation and associated leukocyte rolling, and suggest that endothelial SK-1 is an important contributor to allergic inflammation.Wai Y. Sun, Latasha D. Abeynaike, Samantha Escarbe, Charles D. Smith, Stuart M. Pitson, Michael J. Hickey, Claudine S. Bonde

    Sphingosine-1-phosphate transport and its role in immunology

    No full text
    corecore