119 research outputs found

    Introduction of Sika deer (Cervus nippon nippon) to Scotland

    Get PDF

    Bushmeat in Gabon

    Get PDF

    Hordes of mandrills (Mandrillus sphinx): extreme group size and seasonal male presence

    Get PDF
    Mandrill Mandrillus sphinx hordes in the Lopé Reserve, Gabon, the approximate centre of the mandrill species range, were studied over 3 years from 1996 to 1999. Part of the study site included gallery forests within savanna areas, allowing observation of entire hordes, hitherto impossible in dense forest habitat. Horde size and composition (sex and age classes) were documented using exact records on video film whenever a horde or subgroup crossed an open space. Mean horde size was 620, and hordes of up to 845 individuals were documented, probably the largest stable group size found in any wild, unprovisioned primate population. Hordes were cohesive throughout the study period and did not seem to be aggregations of smaller units. Mandrill societies seem to be quite different from the baboon societies, to which they have been compared to date. Mature, breeding-age males were not resident members of hordes, but entered at the onset of seasonal cycles in the females (as deduced by the presence of sexual tumescence) and emigrated once female sexual cycles ceased. The number of breeding males present in the horde at any one time is best explained by the number of sexually attractive females. It is postulated that the extreme coloration of males and strong sexual dimorphism in mandrills may have evolved through an enhanced need for competitive signals in a situation where no long-term social bonds between breeding partners exist

    Rethinking tropical phenology: insights from long‐term monitoring and novel analytical methods

    Get PDF
    Here, we introduce the Special Section (SS) on long‐term monitoring and new analytical methods in tropical phenology. The SS puts together nine original papers plus a synthesis, bringing significant advances and new insights into our understanding of tropical phenology across Africa and tropical America. The papers address environmental cues, methodological shortcomings, and provide innovative analytical approaches, opening new pathways, perspective and applications of tropical phenology for forest management and environmental monitoring. The SS is a substantial step toward a more comprehensive overview of trends in tropical phenology, as seven of nine studies evaluate >10‐yr data sets applying new methods of analysis such as hierarchical Bayesian models, generalized additive models, and Fourier analysis. We argue that it is essential to maintain ongoing monitoring programs and build a tropical phenology network at least for long‐term (>10 yr) study sites, providing the means for national and international financial support. Cross‐continental comparisons are now a primary goal, as we work toward a global vision of trends and shifts in tropical phenology in the Anthropocene

    Fire management in a changing landscape: a case study from Lopé National Park, Gabon

    Get PDF
    A key management goal in Lopé National Park, Gabon, is to protect regionally-rare savannah ecosystems within the continuous rainforest block. In order to evaluate the impact of existing protection efforts, data on burning season environmental conditions, burning effort and current woody values for savannahs were examined between 1995 and 2008. Results showed (a) spatial heterogeneity in woody values to be correlated with grassy vegetation type (b) a negative relationship between woody vegetation and fire return frequency over the study, suggesting that decreased fire return frequency may favour savannah thickening and (c) that inconsistent burn effort by Park staff, and burns designed for reduced heat, may limit the efficiency of fire to prevent savannah thickening or forest expansion. Optimal humidity and fuel moisture conditions for burning are identified and recommendations made for improving the existing fire plan to achieve the management goal. Modifications will require significant investment of resources and training and require urgent experimental work to disentangle the direct impacts of fire from other processes of vegetation change. Lopé's fire policy should ultimately be a dynamic response to change in the local landscape driven by direct fire impacts or by global climate change

    Can diet niche partitioning enhance sexual dimorphism?

    Get PDF
    Classic evolutionary theory suggests that sexual dimorphism evolves primarily via sexual and fecundity selection. However, theory and evidence are beginning to accumulate suggesting that resource competition can drive the evolution of sexual dimorphism, via ecological character displacement between sexes. A key prediction of this hypothesis is that the extent of ecological divergence between sexes will be associated with the extent of sexual dimorphism. As the stable isotope ratios of animal tissues provide a quantitative measure of various aspects of ecology, we carried out a meta-analysis examining associations between the extent of isotopic divergence between sexes and the extent of body size dimorphism. Our models demonstrate that large amounts of between-study variation in isotopic (ecological) divergence between sexes is nonrandom and may be associated with the traits of study subjects. We, therefore, completed meta-regressions to examine whether the extent of isotopic divergence between sexes is associated with the extent of sexual size dimorphism. We found modest but significantly positive associations across species between size dimorphism and ecological differences between sexes, that increased in strength when the ecological opportunity for dietary divergence between sexes was greatest. Our results, therefore, provide further evidence that ecologically mediated selection, not directly related to reproduction, can contribute to the evolution of sexual dimorphism

    Fourier analysis to detect phenological cycles using long-term tropical field data and simulations

    Get PDF
    Changes in phenology are an inevitable result of climate change, and will have wide-reaching impacts on species, ecosystems, human society and even feedback onto climate. Accurate understanding of phenology is important to adapt to and mitigate such changes. However, analysis of phenology globally has been constrained by lack of data, dependence on geographically limited, non-circular indicators and lack of power in statistical analyses.  To address these challenges, especially for the study of tropical phenology, we developed a flexible and robust analytical approach - using Fourier analysis with confidence intervals - to objectively and quantitatively describe long-term observational phenology data even when data may be noisy. We then tested the power of this approach to detect regular cycles under different scenarios of data noise and length using both simulated and field data.  We use Fourier analysis to quantify flowering phenology from newly available data for 856 individual plants of 70 species observed monthly since 1986 at Lopé National Park, Gabon. After applying a confidence test, we find that 59% of the individuals have regular flowering cycles, and 88% species flower annually. We find time series length to be a significant predictor of the likelihood of confidently detecting a regular cycle from the data. Using simulated data we find that cycle regularity has a greater impact on detecting phenology than event detectability. Power analysis of the Lopé field data shows that at least six years of data are needed for confident detection of the least noisy species, but this varies and is often greater than 20 years for the most noisy species.  There are now a number of large phenology datasets from the tropics, from which insights into current regional and global changes may be gained, if flexible and quantitative analytical approaches are used. However consistent long-term data collection is costly and requires much effort. We provide support for the importance of such research and give suggestions as to how to avoid erroneous interpretation of shorter length datasets and maximize returns from long-term observational studies

    Towards a Sustainable, Participatory and Inclusive Wild Meat Sector

    Get PDF
    First paragraph: Expanding human demands on land, sea and fresh water have led to our planet experiencing unprecedented levels of wildlife declines and extirpations (Ceballos et al., 2017). The Living Planet Index (LPI) as an indicator of global vertebrate abundance declined by up to 58% between 1970–2012 (WWF, 2016). In the most recent version of the International Union for Conservation of Nature’s (IUCN) Red List as many as 32% of assessed vertebrate species are decreasing in terms of both population size and range (IUCN 2017). Larger species are suffering the steepest and most irreversible declines (Dirzo et al., 2014; Ripple et al., 2014, 2015). As wildlife is lost, biodiversity is reduced and ecosystem integrity suffers (Dirzo et al., 2014; Young et al., 2016)

    Rare ground data confirm significant warming and drying in western equatorial Africa

    Get PDF
    Background The humid tropical forests of Central Africa influence weather worldwide and play a major role in the global carbon cycle. However, they are also an ecological anomaly, with evergreen forests dominating the western equatorial region despite less than 2,000 mm total annual rainfall. Meteorological data for Central Africa are notoriously sparse and incomplete and there are substantial issues with satellite-derived data because of persistent cloudiness and inability to ground-truth estimates. Long-term climate observations are urgently needed to verify regional climate and vegetation models, shed light on the mechanisms that drive climatic variability and assess the viability of evergreen forests under future climate scenarios. Methods We have the rare opportunity to analyse a 34 year dataset of rainfall and temperature (and shorter periods of absolute humidity, wind speed, solar radiation and aerosol optical depth) from LopĂ© National Park, a long-term ecological research site in Gabon, western equatorial Africa. We used (generalized) linear mixed models and spectral analyses to assess seasonal and inter-annual variation, long-term trends and oceanic influences on local weather patterns. Results Lopé’s weather is characterised by a cool, light-deficient, long dry season. Long-term climatic means have changed significantly over the last 34 years, with warming occurring at a rate of +0.25 °C per decade (minimum daily temperature) and drying at a rate of −75 mm per decade (total annual rainfall). Inter-annual climatic variability at LopĂ© is highly influenced by global weather patterns. Sea surface temperatures of the Pacific and Atlantic oceans have strong coherence with LopĂ© temperature and rainfall on multi-annual scales. Conclusions The LopĂ© long-term weather record has not previously been made public and is of high value in such a data poor region. Our results support regional analyses of climatic seasonality, long-term warming and the influences of the oceans on temperature and rainfall variability. However, warming has occurred more rapidly than the regional products suggest and while there remains much uncertainty in the wider region, rainfall has declined over the last three decades at LopĂ©. The association between rainfall and the Atlantic cold tongue at LopĂ© lends some support for the ‘dry’ models of climate change for the region. In the context of a rapidly warming and drying climate, urgent research is needed into the sensitivity of dry season clouds to ocean temperatures and the viability of humid evergreen forests in this dry region should the clouds disappear

    Grass Species Flammability, Not Biomass, Drives Changes in Fire Behavior at Tropical Forest-Savanna Transitions

    Get PDF
    Forest-savanna mosaics are maintained by fire-mediated positive feedbacks; whereby forest is fire suppressive and savanna is fire promoting. Forest-savanna transitions therefore represent the interface of opposing fire regimes. Within the transition there is a threshold point at which tree canopy cover becomes sufficiently dense to shade out grasses and thus suppress fire. Prior to reaching this threshold, changes in fire behavior may already be occurring within the savanna. Such changes are neither empirically described nor their drivers understood. Fire behavior is largely driven by fuel flammability. Flammability can vary significantly between grass species and grass species composition can change near forest-savanna transitions. This study measured fire behavior changes at eighteen forest-savanna transition sites in a vegetation mosaic in Lopé National Park in Gabon, central Africa. The extent to which these changes could be attributed to changes in grass flammability was determined using species-specific flammability traits. Results showed simultaneous suppression of fire and grass biomass when tree canopy leaf area index (LAI) reached a value of 3, indicating that a fire suppression threshold existed within the forest-savanna transition. Fires became less intense and less hot prior to reaching this fire suppression threshold. These changes were associated with higher LAI values, which induced a change in the grass community, from one dominated by the highly flammable Anadelphia afzeliana to one dominated by the less flammable Hyparrhenia diplandra. Changes in fire behavior were not associated with changes in total grass biomass. This study demonstrated not only the presence of a fire suppression threshold but the mechanism of its action. Grass composition mediated fire-behavior within the savanna prior to reaching the suppression threshold, and grass species composition was mediated by tree canopy cover which was in turn mediated by fire-behavior. These findings highlight how biotic and abiotic controls interact and amplify each other in this mosaicked landscape to facilitate forest and savanna co-existence
    • 

    corecore