36 research outputs found

    The Behavioural and Genetic Mating System of the Sand Tiger Shark, Carcharias taurus, an Intrauterine Cannibal

    Get PDF
    Sand tiger sharks (Carcharias taurus) have an unusual mode of reproduction, whereby the first embryos in each of the paired uteri to reach a certain size (‘hatchlings’) consume all of their smaller siblings during gestation (‘embryonic cannibalism’ or EC). If females commonly mate with multiple males (‘behavioural polyandry’) then litters could initially have multiple sires. It is possible, however, that EC could exclude of all but one of these sires from producing offspring thus influencing the species genetic mating system (‘genetic monogamy’). Here, we use microsatellite DNA profiling of mothers and their litters (n = 15, from two to nine embryos per litter) to quantify the frequency of behavioural and genetic polyandry in this system. We conservatively estimate that nine of the females we examined (60%) were behaviourally polyandrous. The genetic mating system was characterized by assessing sibling relationships between hatchlings and revealed only 40 per cent genetic polyandry (i.e. hatchlings were full siblings in 60% of litters). The discrepancy stemmed from three females that were initially fertilized by multiple males but only produced hatchlings with one of them. This reveals that males can be excluded even after fertilizing ova and that some instances of genetic monogamy in this population arise from the reduction in litter size by EC. More research is needed on how cryptic post-copulatory and post-zygotic processes contribute to determining paternity and bridging the behavioural and genetic mating systems of viviparous species

    Global Spatial Risk Assessment of Sharks Under the Footprint of Fisheries

    Get PDF
    Effective ocean management and conservation of highly migratory species depends on resolving overlap between animal movements and distributions and fishing effort. Yet, this information is lacking at a global scale. Here we show, using a big-data approach combining satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively) and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of high-seas fishing effort. Results demonstrate an urgent need for conservation and management measures at high-seas shark hotspots and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real time, dynamic management

    Reef sharks exhibit site-fidelity and higher relative abundance in marine reserves on the Mesoamerican Barrier Reef.

    Get PDF
    Carcharhinid sharks can make up a large fraction of the top predators inhabiting tropical marine ecosystems and have declined in many regions due to intense fishing pressure. There is some support for the hypothesis that carcharhinid species that complete their life-cycle within coral reef ecosystems, hereafter referred to as "reef sharks", are more abundant inside no-take marine reserves due to a reduction in fishing pressure (i.e., they benefit from marine reserves). Key predictions of this hypothesis are that (a) individual reef sharks exhibit high site-fidelity to these protected areas and (b) their relative abundance will generally be higher in these areas compared to fished reefs. To test this hypothesis for the first time in Caribbean coral reef ecosystems we combined acoustic monitoring and baited remote underwater video (BRUV) surveys to measure reef shark site-fidelity and relative abundance, respectively. We focused on the Caribbean reef shark (Carcharhinus perezi), the most common reef shark in the Western Atlantic, at Glover's Reef Marine Reserve (GRMR), Belize. Acoustically tagged sharks (N = 34) were detected throughout the year at this location and exhibited strong site-fidelity. Shark presence or absence on 200 BRUVs deployed at GRMR and three other sites (another reserve site and two fished reefs) showed that the factor "marine reserve" had a significant positive effect on reef shark presence. We rejected environmental factors or site-environment interactions as predominant drivers of this pattern. These results are consistent with the hypothesis that marine reserves can benefit reef shark populations and we suggest new hypotheses to determine the underlying mechanism(s) involved: reduced fishing mortality or enhanced prey availability

    Compound character attributes (<i>c</i>CA) for CITES-listed shark species.

    No full text
    <p>Position numbers (bold) are from the beginning of the COI gene.</p><p>Compound character attributes (<i>c</i>CA) for CITES-listed shark species.</p

    Sequence matching results in NCBI BLAST and BOLD of unknown processed fins and fin soup samples.

    No full text
    <p># = fin sample identifier, Type = processed fin (P) or soup (S), Loc = Collection location (HK = Hong Kong, USA = United States of America), BOLD = 100% identification at the lowest taxon possible (genus or species) in a Fish Barcode of Life Initiative (FISH-BOL) search, BLAST top hit = closest match in GenBank BLAST search (Coverage, Identity and UNQ (wheter or not the match was unique to that species refer to this search), I.D. = best identification based on the two searches.</p><p>Sequence matching results in NCBI BLAST and BOLD of unknown processed fins and fin soup samples.</p

    Samples of known species identity tested for amplification (AMP) and sequencing (SEQ) performance with the mini-barcode assay.

    No full text
    <p>* denotes a species identified by Clarke et al. (2006) as making up a large fraction of the fin trade. N = Number of individuals tested. “Tests” denotes whether the samples were used to test for positive amplification (“AMP”) and/or sequencing this amplicon (“SEQ”).</p><p>Samples of known species identity tested for amplification (AMP) and sequencing (SEQ) performance with the mini-barcode assay.</p

    Complex movements, philopatry and expanded depth range of a severely threatened pelagic shark, the oceanic whitetip (Carcharhinus longimanus) in the western North Atlantic.

    Get PDF
    Oceanic whitetip sharks (Carcharhinus longimanus) have recently been targeted for conservation in the western North Atlantic following severe declines in abundance. Pop-up satellite archival tags were applied to 11 mature oceanic whitetips (10 females, 1 male) near Cat Island in the central Bahamas 1-8 May 2011 to provide information about the horizontal and vertical movements of this species. Another large female was opportunistically tagged in the U.S. Exclusive Economic Zone (EEZ). Data from 1,563 total tracking days and 1,142,598 combined depth and temperature readings were obtained. Sharks tagged at Cat Island stayed within 500 km of the tagging site for ~30 days before dispersing across 16,422 km(2) of the western North Atlantic. Maximum individual displacement from the tagging site ranged from 290-1940 km after times at liberty from 30-245 days, with individuals moving to several different destinations (the northern Lesser Antilles, the northern Bahamas, and north of the Windward Passage). Many sharks returned to The Bahamas after ~150 days. Estimated residency times within The Bahamas EEZ, where longlining and commercial trade of sharks is illegal, were generally high (mean = 68.2% of time). Sharks spent 99.7% of their time shallower than 200 m and did not exhibit differences in day and night mean depths. There was a positive correlation between daily sea surface temperature and mean depth occupied, suggesting possible behavioral thermoregulation. All individuals made short duration (mean = 13.06 minutes) dives into the mesopelagic zone (down to 1082 m and 7.75°C), which occurred significantly more often at night. Ascent rates during these dives were significantly slower than descent rates, suggesting that these dives are for foraging. The sharks tracked appear to be most vulnerable to pelagic fishing gear deployed from 0-125 m depths, which they may encounter from June to October after leaving the protected waters of The Bahamas EEZ
    corecore