1,209 research outputs found
Automatic log analysis with NLP for the CMS workflow handling
The central Monte-Carlo production of the CMS experiment utilizes the WLCG infrastructure and manages daily thousands of tasks, each up to thousands of jobs. The distributed computing system is bound to sustain a certain rate of failures of various types, which are currently handled by computing operators a posteriori. Within the context of computing operations, and operation intelligence, we propose a Machine Learning technique to learn from the operators with a view to reduce the operational workload and delays. This work is in continuation of CMS work on operation intelligence to try and reach accurate predictions with Machine Learning. We present an approach to consider the log files of the workflows as regular text to leverage modern techniques from Natural Language Processing (NLP). In general, log files contain a substantial amount of text that is not human language. Therefore, different log parsing approaches are studied in order to map the log files’ words to high dimensional vectors. These vectors are then exploited as feature space to train a model that predicts the action that the operator has to take. This approach has the advantage that the information of the log files is extracted automatically and the format of the logs can be arbitrary. In this work the performance of the log file analysis with NLP is presented and compared to previous approaches
Antimicrobial and Antibiofilm Activity of Synergistic Combinations of a Commercially Available Small Compound Library With Colistin Against Pseudomonas aeruginosa
Biofilm-associated Pseudomonas aeruginosa infections remain a significant clinical challenge since the conventional antibiotic treatment or combination therapies are largely ineffective; and new approaches are needed. To circumvent the major challenges associated with discovery of new antimicrobials, we have screened a library of compounds that are commercially available and approved by the FDA (Prestwick Chemical Library) against P. aeruginosa for effective antimicrobial and anti-biofilm activity. A preliminary screen of the Prestwick Chemical Library alone did not yield any repositionable candidates, but in a screen of combinations with a fixed sub-inhibitory concentration of the antibiotic colistin we observed 10 drugs whose bacterial inhibiting activity was reproducibly enhanced, seven of which were enhanced by more than 50%. We performed checkerboard assays of these seven drugs in combination with colistin against planktonic cells, and analysis of their interactions over the complete combination matrix using the Zero Interaction Potency (ZIP) model revealed interactions that varied from highly synergistic to completely antagonistic. Of these, five combinations that showed synergism were down-selected and tested against preformed biofilms of P. aeruginosa. Two of the five combinations were active against preformed biofilms of both laboratory and clinical strain of P. aeruginosa, resulting in a 2-log reduction in culturable cells. In summary, we have identified synergistic combinations of five commercially available, FDA-approved drugs and colistin that show antimicrobial activity against planktonic P. aeruginosa (Clomiphene Citrate, Mitoxantrone Dihydrochloride, Methyl Benzethonium Chloride, Benzethonium Chloride, and Auranofin) as well as two combinations (Auranofin and Clomiphene Citrate) with colistin that show antibiofilm activity
P120 Catenin Regulates the Actin Cytoskeleton via Rho Family Gtpases
Cadherins are calcium-dependent adhesion molecules responsible for the establishment of tight cell–cell contacts. p120 catenin (p120ctn) binds to the cytoplasmic domain of cadherins in the juxtamembrane region, which has been implicated in regulating cell motility. It has previously been shown that overexpression of p120ctn induces a dendritic morphology in fibroblasts (Reynolds, A.B., J. Daniel, Y. Mo, J. Wu, and Z. Zhang. 1996. Exp. Cell Res. 225:328–337.). We show here that this phenotype is suppressed by coexpression of cadherin constructs that contain the juxtamembrane region, but not by constructs lacking this domain. Overexpression of p120ctn disrupts stress fibers and focal adhesions and results in a decrease in RhoA activity. The p120ctn-induced phenotype is blocked by dominant negative Cdc42 and Rac1 and by constitutively active Rho-kinase, but is enhanced by dominant negative RhoA. p120ctn overexpression increased the activity of endogenous Cdc42 and Rac1. Exploring how p120ctn may regulate Rho family GTPases, we find that p120ctn binds the Rho family exchange factor Vav2. The behavior of p120ctn suggests that it is a vehicle for cross-talk between cell–cell junctions and the motile machinery of cells. We propose a model in which p120ctn can shuttle between a cadherin-bound state and a cytoplasmic pool in which it can interact with regulators of Rho family GTPases. Factors that perturb cell–cell junctions, such that the cytoplasmic pool of p120ctn is increased, are predicted to decrease RhoA activity but to elevate active Rac1 and Cdc42, thereby promoting cell migration
Methamphetamine Use and Methicillin-Resistant Staphylococcus aureus Skin Infections
Drug use may be contributing to the spread of MRSA in a rural southeastern US community
Search for Pair-Produced Resonances Decaying to Quark Pairs in Proton-Proton Collisions at √s = 13 TeV
A general search for the pair production of resonances, each decaying to two quarks, is reported. The search is conducted separately for heavier resonances (masses above 400 GeV), where each of the four final-state quarks generates a hadronic jet resulting in a four-jet signature, and for lighter resonances (masses between 80 and 400 GeV), where the pair of quarks from each resonance is collimated and reconstructed as a single jet resulting in a two-jet signature. In addition, a b-tagged selection is applied to target resonances with a bottom quark in the final state. The analysis uses data collected with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 35.9 fb⁻¹, from proton-proton collisions at a center-of-mass energy of 13 TeV. The mass spectra are analyzed for the presence of new resonances, and are found to be consistent with standard model expectations. The results are interpreted in the framework of R-parity-violating supersymmetry assuming the pair production of scalar top quarks decaying via the hadronic coupling λ′′312 or λ′′323 and upper limits on the cross section as a function of the top squark mass are set. These results probe a wider range of masses than previously explored at the LHC, and extend the top squark mass limits in the ˜t→qq′ scenario
Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at √s = 13 TeV
Results are presented from a search for the direct electroweak production of charginos and neutralinos in signatures with either two or more leptons (electrons or muons) of the same electric charge, or with three or more leptons, which can include up to two hadronically decaying tau leptons. The results are based on a sample of proton-proton collision data collected at s√=13 TeV, recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb⁻¹. The observed event yields are consistent with the expectations based on the standard model. The results are interpreted in simplified models of supersymmetry describing various scenarios for the production and decay of charginos and neutralinos. Depending on the model parameters chosen, mass values between 180 GeV and 1150 GeV are excluded at 95% CL. These results significantly extend the parameter space probed for these particles in searches at the LHC. In addition, results are presented in a form suitable for alternative theoretical interpretations
Search for Standard Model Production of Four Top Quarks with Same-Sign and Multilepton Final States in Proton–proton Collisions at √s = 13 TeV
A search for standard model production of four top quarks (tt¯tt¯) is reported using events containing at least three leptons (e,μ) or a same-sign lepton pair. The events are produced in proton–proton collisions at a center-of-mass energy of 13TeV at the LHC, and the data sample, recorded in 2016, corresponds to an integrated luminosity of 35.9fb[superscript −1]. Jet multiplicity and flavor are used to enhance signal sensitivity, and dedicated control regions are used to constrain the dominant backgrounds. The observed and expected signal significances are, respectively, 1.6 and 1.0 standard deviations, and the tt¯tt¯ cross section is measured to be 16.9[superscript +13.8][subscript −11.4] fb, in agreement with next-to-leading-order standard model predictions. These results are also used to constrain the Yukawa coupling between the top quark and the Higgs boson to be less than 2.1 times its expected standard model value at 95% confidence level
Search for Low Mass Vector Resonances Decaying to Quark-Antiquark Pairs in Proton-Proton Collisions at √s = 13 TeV
A search is reported for a narrow vector resonance decaying to quark-antiquark pairs in proton-proton collisions at √s = 13 TeV, collected with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 2.7 fb⁻¹. The vector resonance is produced at large transverse momenta, with its decay products merged into a single jet. The resulting signature is a peak over background in the distribution of the invariant mass of the jet. The results are interpreted in the framework of a leptophobic vector resonance and no evidence is found for such particles in the mass range of 100-300 GeV. Upper limits at 95% confidence level on the production cross section are presented in a region of mass-coupling phase space previously unexplored at the LHC. The region below 140 GeV has not been explored by any previous experiments
- …