View metadata, citation and similar papers at core.ac.uk

L

P
brought to you by .{ CORE

EPJ Web of Conferences 245, 03006 (2020)

CHEP 2019

provided by Caltech Authors - Main

https://doi.org/10.1051/epjconf/202024503006

Automatic log analysis with NLP for the CMS workflow han-

dling

Lukas Layer"*, Daniel Robert Abercrombie?, Hamed Bakhshiansohi®:, Jennifer Adelman-
McCarthy*, Sharad Agarwal>, Andres Vargas Hernandez®, Weinan Si’>, and Jean-Roch

Vlimant?®-

'INFN, National Institute of Nuclear Physics, Naples, Italy

2MIT, Massachusetts Institute of Technology, Cambridge, USA

SDESY, Deutsches Elektronen-Synchrotron, Hamburg, Germany

4FNAL, Fermi National Accelerator Laboratory, Batavia, USA

SCERN, European Organization for Nuclear Research, Geneva, Switzerland
6Catholic University of America, Washington DC, USA

7University of California, Riverside, USA

8California Institute of Technology, Pasadena, USA

Abstract. The central Monte-Carlo production of the CMS experiment utilizes
the WLCG infrastructure and manages daily thousands of tasks, each up to thou-
sands of jobs. The distributed computing system is bound to sustain a certain
rate of failures of various types, which are currently handled by computing op-
erators a posteriori. Within the context of computing operations, and operation
intelligence, we propose a Machine Learning technique to learn from the opera-
tors with a view to reduce the operational workload and delays. This work is in
continuation of CMS work on operation intelligence to try and reach accurate
predictions with Machine Learning. We present an approach to consider the
log files of the workflows as regular text to leverage modern techniques from
Natural Language Processing (NLP). In general, log files contain a substantial
amount of text that is not human language. Therefore, different log parsing ap-
proaches are studied in order to map the log files’ words to high dimensional
vectors. These vectors are then exploited as feature space to train a model that
predicts the action that the operator has to take. This approach has the advantage
that the information of the log files is extracted automatically and the format of
the logs can be arbitrary. In this work the performance of the log file analysis
with NLP is presented and compared to previous approaches.

1 Introduction

The central Monte-Carlo production of the CMS experiment [1] utilizes the LHC grid and
manages thousands of workflow tasks, each with thousands of jobs on over a hundred com-
puting centers worldwide. A certain rate of the jobs fail due to various issues, such as missing
input files or high memory usage. Despite effort of reducing the rate of failure, there remains
a fraction of workflows that requires non trivial intervention. This work has to be done by
computing operators that look at the error codes and error log files to decide the appropriate

*e-mail: lukas.layer@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

https://core.ac.uk/display/345076067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

EPJ Web of Conferences 245, 03006 (2020) https://doi.org/10.1051/epjconf/202024503006
CHEP 2019

actions to take on the workflows. Machine Learning is a natural solution to move the error
handling from manual operation to automated operation. In recent years a framework has
been developed that stores the decision and the information available to the operator for tak-
ing that decision. It is therefore possible to employ Machine Learning techniques to learn
from the operator by training on the labeled data. Several models have been trained based
on the error codes of the workflow failures, but the predictions of these models are not yet
sufficiently precise to replace the operator. Thus new approaches are explored to add the in-
formation that is available in the error log files of the failed workflows in order to improve
the precision.

2 Dataset and Strategy

z 2,
8 g

- cg zc E §

S, °, B =, €

= = 7)) N w
ol ol ml D| D:
e > > [<
=1 0
84 |o|olo|o|ofofoo]ofo olo|o|o[o[o[o][o[o[oo][o[0[0O
85 |of@olo|o 0/0]0 olojo]ofofo ofololfo
92 (o|offo|[o[ofo]o]o olojo]o|o|o olo[o]o]o
134 |0|o|o|ojof@ololo]0 olojo|ofolo]0 olojo|ofo
139 |0]|0|0|0]0 o/o|o0 olojo|o[o|o]0 olojo|o]o
8oo1|0|0|0|o|0|0[0[0|0O]0O olojo|ofo|o]0 olojo|o]o
8004|0|0|0|0|0[0|0O[0|0O]0O olojo|o|o[o[0O olojo|o]|o
50110/0|/0(0|0|0[0[0]0O[0[0O olojo|ofo|o]0 olojo|o]o
50660/00 O O Q9 om0/
50664/ 0|0 0 o [l o olo[o]o
71304/ 0|0 0 olo[0 olo[o]o
0 0 olo|o0 0 0.

Figure 1: Example for a sparse error-site matrix. The entries of the matrix are the number of
times an error code has been thrown.

The dataset used for the Machine Learning consists of failing workflow tasks in the time
period between January 2017 and August 2019, which corresponds to approximately 33 000
failed tasks. The data is pulled from the CMS services using Workflow Team Web Tools. The
target for the Machine Learning are the actions of the operators. In Table 1 the most important
actions are shown. The most common action "ACDC without modification" is a retry of only
failed jobs without any modification of the memory or the job splitting. In the scope of this
work, the goal of the Machine Learning is a binary classification to predict whether the action
taken by the operator is an "ACDC without modification" or a different action.

The input for the Machine Learning is a sparse matrix of error codes and sites. For each
task the number of times a possible error code is thrown at each site is known. With this
information a sparse matrix of error codes and sites can be built that contains the number of
times an error has been thrown. An example is shown in Figure 1. Several models to predict
the operator’s action based on this input have been studied in the last years [2].

EPJ Web of Conferences 245, 03006 (2020) https://doi.org/10.1051/epjconf/202024503006
CHEP 2019

Table 1: Actions taken by the operator

Action Fraction
ACDC without modification 87 %
ACDC with modification 6%
clone 5%
other 2 %

Additionally, for each thrown error code a snippet of the error log that contains the occurred
exception is stored by the CMS WMArchive service [3]. The WMArchive entries are analyzed
with Apache Spark on the CERN SWAN platform for interactive computing [5]. The pandas
library [4] is used to merge the information of the log snippets from WMArchive and the
information from Workflow Team Web Tools. A pandas frame that contains the raw input for
the Machine Learning is shown in Figure 2.

task_name errors sites count error_msg action
0 /pdmvserv_task_EXO-RunlISu... [-1, 8001] [T2_US_Caltech, T2_US_Calt... [1,1] [nan, [An, exception, of, ... acdc
1 Nlimant_task_HIG-RunlISum... [-1, 99303] [T2_US_Caltech, T2_US_Calt... 1 [nan, nan] acdc
2 /pdmvserv_task_B2G-RunlISu... [8028, -1, -1] [T3_US_NERSC, T2_US_Caltec... [2,1,1] [[An, exception, of, categ... acdc
3 /pdmvserv_task_EGM-RunllFa... [-1, 8003, -1, 8003, 99303... [T2_ES_CIEMAT, T2_ES_CIEMA... [1,1,1,1,1,1] [nan, [An, exception, of, ... acdc
4 /pdmvserv_task_HIG-RunllFa... [-1, 85] [T2_US_UCSD, T2_US_UCSD] [1,1] [nan, [An, exception, of, ... acdc

Figure 2: Pandas frame that contains the information to build the sparse error-site matrix and
the labels for the Machine Learning.

3 Natural Language Processing

To use the error log snippets in the Machine Learning, numerical representations of the words
(word embeddings) have to be obtained and subsequently have to be converted into a numeri-
cal representation of the text snippet. This can either be done using unsupervised algorithms,
like word2vec, or by learning the word representations directly in the supervised training. In
both cases the error log snippets have to be preprocessed.

3.1 Preprocessing of the error log snippets
The preprocessing consists out of the following steps and is done with pandas and the Natural
Language Toolkit [7].

o Tokenization: the text string is split up in single words with the NLTK treebank tokenizer,
which is a tokenizer that uses regular expressions and is suited for error logs.

e Cleaning: low frequency words, special characters and single characters that are not im-
portant for the meaning of the error message are filtered out.

e Selection: since sometimes multiple snippets of the error logs have been stored, ad-hoc
rules have been introduced to select the most meaningful snippet.

e Indexing: every unique word in the corpus of the error log snippets is associated with an
unique integer.

EPJ Web of Conferences 245, 03006 (2020) https://doi.org/10.1051/epjconf/202024503006
CHEP 2019

3.2 Unsupervised learning of word embeddings

Word2vec [6] is an unsupervised algorithm to learn word embeddings. The model is a shallow,
two-layer Neural Network that takes a text corpus as input. The output is a high-dimensional
vector space with each unique word in the corpus being assigned a corresponding vector in
the space. Semantically similar words are mapped to nearby points in the vector space. This
captures relations between the words and reduces the dimensionality compared to one-hot
encoding.

The word2vec algorithm is used to learn word embeddings for the words of the error log
snippets. Subsequently the word vectors of the words in each error log snippet are averaged
to get a numerical representation of each snippet. The resulting high-dimensional vectors
can be visualized in two dimensions with the t-SNE algorithm, that maps similar objects to
nearby points and dissimilar objects to distant points. In Figure 3 the output of the t-SNE
algorithm for the averaged vectors of 5000 error log snippets is shown. Clusters are forming
that correspond to similar error codes. This is natural, since error log snippets from the same
error code share several words and thus the averaged vectors are close in the high dimensional
vector space.

100 Error code
LY o 50660
75 o 8 29109 input: | (None, 500)
X 139 InputLayer
50 . . oo output: | (None, 500)
50664
25 * t . P g 8001
) o 99401
(3 " , -
L KJ ' o 8501
o ¢ T .“é". . " S input: (None, 500)
% M i3 Bmbedding (None, 500, 50)
-25 ‘s®] Y4 output: one, 500,
X4 °
—50 » '@
L]
&
-75 * 2 input: | (None, 500, 50)
GRU
100 output: (None, 10)
-100 =50 0 50 100 150

Figure 3: Left panel: output of the t-SNE algorithm for 5000 error log snippets after averaging
the word vectors of each snippet. Right panel: sketch of a model that uses a GRU to obtain a
numerical representation of a text snippet.

3.3 Supervised learning of word embeddings

The unsupervised training does not make use of the sequential nature of language. This can be
exploited by using a Recurrent Neural Network, such as a Long Short-Term Memory (LSTM)
or a Gated Recurrent Unit (GRU). In the right panel of Figure 3 an example for a model
using a GRU is shown. The input layer of the model takes a vector with a maximum of 500
indexed words. The following embedding layer picks out the word vector corresponding to
the respective integer of each word. In case that the text snippet is shorter than 500 words, the
integer sequence is filled up with zeros. The zeros are masked in the embedding layer, such
that the vectors corresponding to zero are not considered in further calculations. It should

EPJ Web of Conferences 245, 03006 (2020) https://doi.org/10.1051/epjconf/202024503006
CHEP 2019

be noted that the embedding layer can be initialized with vectors obtained in unsupervised
trainings, e.g. by training on the whole corpus of Wikipedia. The GRU takes as input the
sequence of word vectors and outputs a 10-dimensional vector that encodes the meaning of
the text snippet. This model can then be used in a larger model to train the word embeddings
depending on the objective to optimize.

4 Models and Training

InputLayer Matrix of Error Logs

hyer
jutLayer

InputLayer

Embedding + GRU
for each Error Log

InputLayer
utLayer
tLayer

nes | Embedding
bedding

edding
Embedding
R0 GRU
RU
|
Y
Reshape | InputLayer
Concatenate
\
Dense
\
Classification

Figure 4: Sketch of a model that uses a GRU to encode the error log snippets of the sparse
error-site matrix. Also the error count information is added. The final target is a binary
classification.

The models are implemented using the Keras framework [8]. Three different classes of mod-
els are considered:

EPJ Web of Conferences 245, 03006 (2020)

CHEP 2019

e Baseline model: a simple Feed-Forward Neural Network that only uses the error-site matrix
with the number of times an error code has been thrown on each site.

e Model that uses an RNN for the error log snippets (RNN): a model that uses the error-site
matrix with the number of times an error code has been thrown as first input branch and
the RNN model described in Section 3.3 to represent the error log snippets as second input
branch. The word embeddings are learned in the supervised training. A sketch for the
architecture of this model is shown in Figure 4.

e Model that uses averaged word2vec vectors (AVG): a model that uses the error-site matrix
with the number of times an error code has been thrown as first input branch and the
averaged word2vec vectors of the error log snippets as second input branch.

Table 2: Model parameters

Model Number of parameters Batch size Training time (1 epoch)
Baseline O(500000) 500 O(1 ms)

AVG O(1 000 000) 100 ol s)

RNN O(5 000 000) 4 O(1 h)

The order of magnitude of the number of parameters, the batch size and the training time for
one epoch is shown in Table 2. In particular the use of RNNs results in long training times
and a small batch size has to be used due to the high memory usage of the model. The training
has been done on the Caltech GPU Cluster with 2-8 NVidia GeForce GTX and Titan X/Xp.
Bayesian optimization with multiple GPUs has been used to optimize the hyperparameters of
the models. Two further methods for the training have been explored: the NNLO framework
[9] that allows to train one model distributed on multiple GPUs and the spark_sklearn library
on the CERN SWAN platform that allows to train up to 60 3-fold cross-validated models in
parallel.

5 Results
0.90
0.90
0.85
0.85 |
®] I T B
O ¢ \ D 080 L — ' +
D 080+ <
S S 075 +
8 0.75 8 '
0701 ¢ Baseline 0.70 ¢ Baseline
’ RNN RNN
¢ AVG 0.65 ; r , ; r
0.65 02 0.4 0.6 0.8 1.0

Data Fraction

Figure 5: Left panel: 3-folded ROC AUC for the discrimination of "ACDC withouth modi-
fication" vs. other actions for the three models. Right panel: ROC AUC as a function of the
training data for the baseline model and the RNN model.

Due to the small amount of training data and the large class-imbalance, 3-fold cross-
validation of the area under the ROC curve (ROC AUC) is used as metric for the evaluation

https://doi.org/10.1051/epjconf/202024503006

EPJ Web of Conferences 245, 03006 (2020) https://doi.org/10.1051/epjconf/202024503006
CHEP 2019

of the performance. As described in Section 2, the target is to discriminate the most common
action "ACDC without modification" against other actions. In the left panel in Figure 5 the
optimized ROC AUC for the three models defined in the previous section is shown. The dif-
ferent models give similar results and the ROC AUC value is around 0.83. In the right panel
the ROC AUC metric is shown as a function of the training data for the baseline model and
the most promising NLP model that uses an RNN to represent the error log snippets. This
plot illustrates that the performance of the models is still improving with more data.

6 Conclusions

A pipeline for the Data Acquisition and Machine Learning has been implemented to predict
the operator’s action for failing CMS workflow tasks. First models using Natural Language
Processing have been trained successfully. The addition of the error log snippets in the train-
ing makes the models more complex and in particular the use of RNNs results in long training
times. At this point of the work, the models have a similar performance.

Further optimization of the pipeline is required to exploit the full potential of the error logs.
In general, the performance of the models will improve over the next years with more data.
In the near future the models will be deployed and feedback from the operators on the sug-
gestions of the Al will be collected. A more refined training will be performed to move from
binary classification to multiclass classification in order to predict multiple actions.

Within the Rucio Scientific Data Management program [10] the development of a common
system to collect and categorize errors, provide operators with actions and collect feedback
on the Al suggestions is foreseen and the acquisition and analysis of error log snippets with
Machine Learning, as explored in this work, will be part of it.

References

[1] CMS Collaboration, "The CMS experiment at the CERN LHC", J. Instrum 3 (2008)
[2] C. Contreras et al., "CMS Workflow Failures Recovery Panel, Towards Al-assisted Oper-
ation”, CHEP 2018, https://indico.cern.ch/event/587955/contributions/2937424/
[3] V. Kuznetsov and N. Fischer and Y. Guo, "The Archive Solution for Distributed Workflow
Management Agents of the CMS Experiment at LHC", Comput. Softw. Big Sci 2 (2018)
[4] W.McKinney, "Data Structures for Statistical Computing in Python", Proceedings of the
9th Python in Science Conference, 51-56 (2010)

[5] D. Piparo et al., "SWAN: a service for interactive analysis in the cloud", Future Gener
Comput Syst 78 Part 3 (2018)

[6] T. Mikolov et al., "Efficient Estimation of Word Representations in Vector Space”,
arXiv:1301.3781

[7] E. Loper and S., Bir, "NLTK: The Natural Language Toolkit", In Proceedings of the
ACL Workshop on Effective Tools and Methodologies for Teaching Natural Language
Processing and Computational Linguistics. Philadelphia: Association for Computational
Linguistics, 2002

[8] F. Chollet and others, "Keras", 2015, https://keras.io

[9] J. Vlimant et al., "MPI-based tools for large-scale training and optimization at HPC
sites", CHEP 2019, https://indico.cern.ch/event/773049/contributions/3474799/

[10] M. Barisits, T. Beermann, F. Berghaus et al., "Rucio: Scientific Data Management",
Comput Softw Big Sci (2019) 3: 11

