6 research outputs found

    Increase in TNF-α and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a)

    Get PDF
    We find that CD11c+ cells with many markers of dendritic cells (DCs) are a major cell type in the skin lesions of psoriasis. These CD11c + cells, which are evident in both epidermis and dermis, are the sites for the expression of two mediators of inflammation, inducible nitric oxide synthase (iNOS) and TNF-α in diseased skin. These cells express HLA-DR, CD40, and CD86, lack the Langerin and CD14 markers of Langerhans cells and monocytes, respectively, and to a significant extent express the DC maturation markers DC-LAMP and CD83. Treatment of psoriasis with efalizumab (anti-CD11a a, Raptiva) strongly reduces infiltration by these DCs in patients responding to this agent. Disease activity after therapy was more related to DC infiltrates and iNOS mRNA levels than T cell infiltrates, and CD11c+ cells responded more quickly to therapy than epidermal keratinocytes. Our results suggest that a type of DC, which resembles murine Tip-DCs that can accumulate during infection, has proinflammatory effects in psoriasis through nitric oxide and TNF-α production, and can be an important target for suppressive therapies

    Limitation of adipose tissue enlargement in rats chronically treated with semicarbazide-sensitive amine oxidase and monoamine oxidase inhibitors.

    No full text
    International audienceInhibition of semicarbazide-sensitive amine oxidases (SSAO) and monoamine oxidases (MAO) reduces fat deposition in obese rodents: chronic administration of the SSAO-inhibitor semicarbazide (S) in combination with pargyline (MAO-inhibitor) has been shown to reduce body weight gain in obese Zucker rats, while (E)-2-(4-fluorophenethyl)-3-fluoroallylamine, an SSAO- and MAO-B inhibitor, has been reported to limit weight gain in obese and diabetic mice. Our aim was to state whether such weight gain limitation could occur in non-obese, non-diabetic rats and to extend these observations to other amine oxidase inhibitors. Prolonged treatment of non-obese rats with a high dose of S (900 micromol kg(-1) day(-1)) reduced body weight gain and limited white adipose tissue enlargement. When chronically administered at a threefold lower dose, S also inhibited SSAO activity but not fat depot enlargement, suggesting that effects other than SSAO inhibition were involved in adipose tissue growth retardation. However, combined treatment of this lower dose of S with pargyline inhibited SSAO, MAO, energy intake, weight gain and fat deposition. Adipocytes from treated rats exhibited unchanged insulin responsiveness but impaired antilipolytic responses to amine oxidase substrates. Phenelzine clearly inhibited both MAO and SSAO when tested on adipocytes. Obese rats receiving phenelzine i.p. at 17 micromol kg(-1) day(-1) for 3 weeks, exhibited blunted MAO and SSAO activities in any tested tissue, diminished body weight gain and reduced intra-abdominal adipose tissue. Their adipocytes were less responsive to lipogenesis activation by tyramine or benzylamine. These observations suggest that SSAO inhibition is not sufficient to impair fat deposition. However, combined MAO and SSAO inhibition limits adiposity in non-obese as well as in obese rats
    corecore