241 research outputs found

    Natural Islands for a 125 GeV Higgs in the scale-invariant NMSSM

    Full text link
    We study whether a 125 GeV standard model-like Higgs boson can be accommodated within the scale-invariant NMSSM in a way that is natural in all respects, i.e., not only is the stop mass and hence its loop contribution to Higgs mass of natural size, but we do not allow significant tuning of NMSSM parameters as well. We pursue as much as possible an analytic approach which gives clear insights on various ways to accommodate such a Higgs mass, while conducting complementary numerical analyses. We consider both scenarios with singlet-like state being heavier and lighter than SM-like Higgs. With A-terms being small, we find for the NMSSM to be perturbative up to GUT scale, it is not possible to get 125 GeV Higgs mass, which is true even if we tune parameters of NMSSM. If we allow some of the couplings to become non-perturbative below the GUT scale, then the non-tuned option implies that the singlet self-coupling, kappa, is larger than the singlet-Higgs coupling, lambda, which itself is order 1. This leads to a Landau pole for these couplings close to the weak scale, in particular below ~10^4 TeV. In both the perturbative and non-perturbative NMSSM, allowing large A_lambda, A_kappa gives "more room" to accommodate a 125 GeV Higgs, but a tuning of these A-terms may be needed. In our analysis we also conduct a careful study of the constraints on the parameter space from requiring global stability of the desired vacuum fitting a 125 GeV Higgs, which is complementary to existing literature. In particular, as the singlet-Higgs coupling lambda increases, vacuum stability becomes more serious of an issue.Comment: 34 pages, 4 figures, references added, minor corrections to text and figures, version to be published in JHE

    Effects of Supersymmetric Threshold Corrections on High-Scale Flavor Textures

    Get PDF
    Integration of superpartners out of the spectrum induces potentially large contributions to Yukawa couplings. These corrections, the supersymmetric threshold corrections, therefore influence the CKM matrix prediction in a non-trivial way. We study effects of threshold corrections on high-scale flavor structures specified at the gauge coupling unification scale in supersymmetry. In our analysis, we first consider high-scale Yukawa textures which qualify phenomenologically viable at tree level, and find that they get completely disqualified after incorporating the threshold corrections. Next, we consider Yukawa couplings, such as those with five texture zeroes, which are incapable of explaining flavor-changing proceses. Incorporation of threshold corrections, however, makes them phenomenologically viable textures. Therefore, supersymmetric threshold corrections are found to leave observable impact on Yukawa couplings of quarks, and any confrontation of high-scale textures with experiments at the weak scale must take into account such corrections.Comment: 25 pages, submitted to JHE

    The generalised NMSSM at one loop: fine tuning and phenomenology

    Full text link
    We determine the degree of fine tuning needed in a generalised version of the NMSSM that follows from an underlying Z4 or Z8 R symmetry. We find that it is significantly less than is found in the MSSM or NMSSM and extends the range of Higgs mass that have acceptable fine tuning up to Higgs masses of mh ~ 130 GeV. For universal boundary conditions analogous to the CMSSM the phenomenology is rather MSSM like with the singlet states typically rather heavy. For more general boundary conditions the singlet states can be light, leading to interesting signatures at the LHC and direct detection experiments.Comment: 20 pages, 9 figures, matches published versio

    A precision study of the fine tuning in the DiracNMSSM

    Get PDF
    Recently the DiracNMSSM has been proposed as a possible solution to reduce the fine tuning in supersymmetry. We determine the degree of fine tuning needed in the DiracNMSSM with and without non-universal gaugino masses and compare it with the fine tuning in the GNMSSM. To apply reasonable cuts on the allowed parameter regions we perform a precise calculation of the Higgs mass. In addition, we include the limits from direct SUSY searches and dark matter abundance. We find that both models are comparable in terms of fine tuning, with the minimal fine tuning in the GNMSSM slightly smaller.Comment: 20 pages + appendices, 10 figure

    Singlet-doublet Higgs mixing and its implications on the Higgs mass in the PQ-NMSSM

    Full text link
    We examine the implications of singlet-doublet Higgs mixing on the properties of a Standard Model (SM)-like Higgs boson within the Peccei-Quinn invariant extension of the NMSSM (PQ-NMSSM). The SM singlet added to the Higgs sector connects the PQ and visible sectors through a PQ-invariant non-renormalizable K\"ahler potential term, making the model free from the tadpole and domain-wall problems. For the case that the lightest Higgs boson is dominated by the singlet scalar, the Higgs mixing increases the mass of a SM-like Higgs boson while reducing its signal rate at collider experiments compared to the SM case. The Higgs mixing is important also in the region of parameter space where the NMSSM contribution to the Higgs mass is small, but its size is limited by the experimental constraints on the singlet-like Higgs boson and on the lightest neutralino constituted mainly by the singlino whose Majorana mass term is forbidden by the PQ symmetry. Nonetheless the Higgs mixing can increase the SM-like Higgs boson mass by a few GeV or more even when the Higgs signal rate is close to the SM prediction, and thus may be crucial for achieving a 125 GeV Higgs mass, as hinted by the recent ATLAS and CMS data. Such an effect can reduce the role of stop mixing.Comment: 26 pages, 3 figures; published in JHE

    Single-Scale Natural SUSY

    Get PDF
    We consider the prospects for natural SUSY models consistent with current data. Recent constraints make the standard paradigm unnatural so we consider what could be a minimal extension consistent with what we now know. The most promising such scenarios extend the MSSM with new tree-level Higgs interactions that can lift its mass to at least 125 GeV and also allow for flavor-dependent soft terms so that the third generation squarks are lighter than current bounds on the first and second generation squarks. We argue that a common feature of almost all such models is the need for a new scale near 10 TeV, such as a scale of Higgsing or confinement of a new gauge group. We consider the question whether such a model can naturally derive from a single mass scale associated with supersymmetry breaking. Most such models simply postulate new scales, leaving their proximity to the scale of MSSM soft terms a mystery. This coincidence problem may be thought of as a mild tuning, analogous to the usual mu problem. We find that a single mass scale origin is challenging, but suggest that a more natural origin for such a new dynamical scale is the gravitino mass, m_{3/2}, in theories where the MSSM soft terms are a loop factor below m_{3/2}. As an example, we build a variant of the NMSSM where the singlet S is composite, and the strong dynamics leading to compositeness is triggered by masses of order m_{3/2} for some fields. Our focus is the Higgs sector, but our model is compatible with a light stop (with the other generation squarks heavy, or with R-parity violation or another mechanism to hide them from current searches). All the interesting low-energy mass scales, including linear terms for S playing a key role in EWSB, arise dynamically from the single scale m_{3/2}. However, numerical coefficients from RG effects and wavefunction factors in an extra dimension complicate the otherwise simple story.Comment: 32 pages, 3 figures; version accepted by JHE

    Radiative contribution to neutrino masses and mixing in ΌΜ\mu\nuSSM

    Full text link
    In an extension of the minimal supersymmetric standard model (popularly known as the ΌΜ\mu\nuSSM), three right handed neutrino superfields are introduced to solve the ÎŒ\mu-problem and to accommodate the non-vanishing neutrino masses and mixing. Neutrino masses at the tree level are generated through R−R-parity violation and seesaw mechanism. We have analyzed the full effect of one-loop contributions to the neutrino mass matrix. We show that the current three flavour global neutrino data can be accommodated in the ΌΜ\mu\nuSSM, for both the tree level and one-loop corrected analyses. We find that it is relatively easier to accommodate the normal hierarchical mass pattern compared to the inverted hierarchical or quasi-degenerate case, when one-loop corrections are included.Comment: 51 pages, 14 figures (58 .eps files), expanded introduction, other minor changes, references adde

    Does zero temperature decide on the nature of the electroweak phase transition?

    Get PDF
    Taking on a new perspective of the electroweak phase transition, we investigate in detail the role played by the depth of the electroweak minimum (“vacuum energy difference”). We find a strong correlation between the vacuum energy difference and the strength of the phase transition. This correlation only breaks down if a negative eigen-value develops upon thermal corrections in the squared scalar mass matrix in the broken vacuum before the critical temperature. As a result the scalar fields slide across field space toward the symmetric vacuum, often causing a significantly weakened phase transition. Phenomenological constraints are found to strongly disfavour such sliding scalar scenarios. For several popular models, we suggest numerical bounds that guarantee a strong first order electroweak phase transition. The zero temperature phenomenology can then be studied in these parameter regions without the need for any finite temperature calculations. For almost all non-supersymmetric models with phenomenologically viable parameter points, we find a strong phase transition is guaranteed if the vacuum energy difference is greater than −8.8 × 107 GeV4. For the GNMSSM, we guarantee a strong phase transition for phenomenologically viable parameter points if the vacuum energy difference is greater than −6.9×107 GeV4. Alternatively, we capture more of the parameter space exhibiting a strong phase transition if we impose a simultaneous bound on the vacuum energy difference and the singlet mass

    Stage Call: Cardiovascular Reactivity to Audition Stress in Musicians

    Get PDF
    Auditioning is at the very center of educational and professional life in music and is associated with significant psychophysical demands. Knowledge of how these demands affect cardiovascular responses to psychosocial pressure is essential for developing strategies to both manage stress and understand optimal performance states. To this end, we recorded the electrocardiograms (ECGs) of 16 musicians (11 violinists and 5 flutists) before and during performances in both low- and high-stress conditions: with no audience and in front of an audition panel, respectively. The analysis consisted of the detection of R-peaks in the ECGs to extract heart rate variability (HRV) from the notoriously noisy real-world ECGs. Our data analysis approach spanned both standard (temporal and spectral) and advanced (structural complexity) techniques. The complexity science approaches—namely, multiscale sample entropy and multiscale fuzzy entropy—indicated a statistically significant decrease in structural complexity in HRV from the low- to the high-stress condition and an increase in structural complexity from the pre-performance to performance period, thus confirming the complexity loss theory and a loss in degrees of freedom due to stress. Results from the spectral analyses also suggest that the stress responses in the female participants were more parasympathetically driven than those of the male participants. In conclusion, our findings suggest that interventions to manage stress are best targeted at the sensitive pre-performance period, before an audition begins
    • 

    corecore