We examine the implications of singlet-doublet Higgs mixing on the properties
of a Standard Model (SM)-like Higgs boson within the Peccei-Quinn invariant
extension of the NMSSM (PQ-NMSSM). The SM singlet added to the Higgs sector
connects the PQ and visible sectors through a PQ-invariant non-renormalizable
K\"ahler potential term, making the model free from the tadpole and domain-wall
problems. For the case that the lightest Higgs boson is dominated by the
singlet scalar, the Higgs mixing increases the mass of a SM-like Higgs boson
while reducing its signal rate at collider experiments compared to the SM case.
The Higgs mixing is important also in the region of parameter space where the
NMSSM contribution to the Higgs mass is small, but its size is limited by the
experimental constraints on the singlet-like Higgs boson and on the lightest
neutralino constituted mainly by the singlino whose Majorana mass term is
forbidden by the PQ symmetry. Nonetheless the Higgs mixing can increase the
SM-like Higgs boson mass by a few GeV or more even when the Higgs signal rate
is close to the SM prediction, and thus may be crucial for achieving a 125 GeV
Higgs mass, as hinted by the recent ATLAS and CMS data. Such an effect can
reduce the role of stop mixing.Comment: 26 pages, 3 figures; published in JHE