11 research outputs found

    Vers un couplage des processus de conception de systèmes et de planification de projets : formalisation de connaissances méthodologiques et de connaissances métier

    Get PDF
    Les travaux présentés dans cette thèse s'inscrivent dans une problématique d'aide à la conception de systèmes, à la planification de leur projet de développement et à leur couplage. L'aide à la conception et à la planification repose sur la formalisation de deux grands types de connaissances : les connaissances méthodologiques utilisables quel que soit le projet de conception et, les connaissances métier spécifiques à un type de conception et/ou de planification donné. Le premier chapitre de la thèse propose un état de l'art concernant les travaux sur le couplage des processus de conception de systèmes et de planification des projets associés et expose la problématique de nos travaux. Deux partie traitent ensuite, d'une part, des connaissances méthodologiques et, d'autre part, des connaissances métier. La première partie expose trois types de couplages méthodologiques. Le couplage structurel propose de formaliser les entités de conception et de planification puis permet leur création et leur association. Le couplage informationnel définit les attributs de faisabilité et de vérification pour ces entités et synchronise les états de ces dernières vis-à-vis de ces attributs. Enfin, le couplage décisionnel consiste à proposer, dans un même espace et sous forme de tableau de bord, les informations nécessaires et suffisantes à la prise de décision par les acteurs du projet de conception. La seconde partie propose de formaliser, d'exploiter et de capitaliser la connaissance métier. Après avoir formalisé ces connaissances sous forme d'une ontologie de concepts, deux mécanismes sont exploités : un mécanisme de réutilisation de cas permettant de réutiliser, en les adaptant, les projets de conception passés et un mécanisme de propagation de contraintes permettant de propager des décisions de la conception vers la planification et réciproquement. ABSTRACT : The work presented in this thesis deals with aiding system design, development project planning and its coupling. Aiding design and planning is based on the formalization of two kind of knowledge: methodological knowledge that can be used in all kind of design projects and business knowledge that are dedicated to a particular kind of design and/or planning. The first chapter presents a state of the art about coupling system design process and project planning process and gives the problem of our work. Then, two parts deal with design and planning coupling thanks to, on one hand, methodological knowledge, and on the other hand, business knowledge. The first part presents three types of methodological coupling. The structural coupling defines design and planning entities and permits its simultaneous creation of and its association. The informational coupling defines feasibility and verification attributes for these entities and synchronizes its attribute states. Finally, the decisional coupling consists in proposing, in a single dashboard, the necessary and sufficient information to make a decision by the design project actors. The second part proposes to formalize, to exploit and to capitalize business knowledge. This knowledge is formalized with ontology of concepts. Then, two mechanisms are exploited: a case reuse mechanism that permits to reuse and adapt former design projects and a constraint propagation mechanism that allows propagating decisions from design to planning and reciprocally

    Coupling system design and project planning: discussion on a bijective link between system and project structures

    Get PDF
    This article discuss the architecture of an integrated model able to support the coupling between a system design process and a project planning process. The project planning process is in charge of defining, planning and controlling the system design project. A benchmarking analysis carried out with fifteen companies belonging to the world competitiveness cluster, Aerospace Valley, has highlighted a lack of models, processes and tools for aiding the interactions between the two environments. We define the coupling as the establishment of links between entities of the two domains while preserving their original semantic, thus allowing information to be collected. The proposed coupling is recursive. It enables systems to be decomposed into subsystems when designers consider complexity to be too high, and can also decompose projects into sub-projects. The coupling enables systematically links to be drawn between project entities and system entities. In this paper, we discuss the different possibilities of linking system and project structures during the design and the planning processes. Firstly, after presenting the results of the industrial analysis, the different entities are defined and the various coupling modes are discussed

    Case-based reasoning and system design: An integrated approach based on ontology and preference modeling

    Get PDF
    This paper addresses the fulfillment of requirements related to case-based reasoning (CBR) processes for system design. Considering that CBR processes are well suited for problem solving, the proposed method concerns the definition of an integrated CBR process in line with system engineering principles. After the definition of the requirements that the approach has to fulfill, an ontology is defined to capitalize knowledge about the design within concepts. Based on the ontology, models are provided for requirements and solutions representation. Next, a recursive CBR process, suitable for system design, is provided. Uncertainty and designer preferences as well as ontological guidelines are considered during the requirements definition, the compatible cases retrieval, and the solution definition steps. This approach is designed to give flexibility within the CBR process as well as to provide guidelines to the designer. Such questions as the following are conjointly treated: how to guide the designer to be sure that the requirements are correctly defined and suitable for the retrieval step, how to retrieve cases when there are no available similarity measures, and how to enlarge the research scope during the retrieval step to obtain a sufficient panel of solutions. Finally, an example of system engineering in the aeronautic domain illustrates the proposed method. A testbed has been developed and carried out to evaluate the performance of the retrieval algorithm and a software prototype has been developed in order to test the approach. The outcome of this work is a recursive CBR process suitable to engineering design and compatible with standards. Requirements are modeled by means of flexible constraints, where the designer preferences are used to express the flexibility. Similar solutions can be retrieved even if similarity measures between features are not available. Simultaneously, ontological guidelines are used to guide the process and to aid the designer to express her/his preferences

    System design and project planning: Model and rules to manage their interactions

    Get PDF
    This article proposes a model and rules dealing with the management of the interaction between system design processes and project planning ones. An industrial benchmark analysis has reinforced our belief that the interaction between the two processes has to be supported by models, processes and relevant tools. Firstly, after presenting the results of the analysis, the different entities are defined and the one-to-one relationship or bijection between the structure of the system and the structure of the project is made. Then, a model, taking into account design activities and planning activities as well as management of interactions, is proposed in compliance with existing project and design standards. A process of interaction is presented to carry out design and project management. Two interaction modes have been proposed. On the one hand, the structural interaction establishes links between entities of the two domains. On the other hand, the behavioral interaction (subject of this paper) is based on the definition of states for each entity following feasibility and verification criteria, and can thus manage the changes between states. Some rules are defined (precedence and synchronous rules) to forbid certain changes when they are inconsistent and to synchronize them

    Towards a coupling of system design and project planning processes : formalization of methodological knowledge and business knowledge

    No full text
    Les travaux présentés dans cette thèse s'inscrivent dans une problématique d'aide à la conception de systèmes, à la planification de leur projet de développement et à leur couplage. L'aide à la conception et à la planification repose sur la formalisation de deux grands types de connaissances : les connaissances méthodologiques utilisables quel que soit le projet de conception et, les connaissances métier spécifiques à un type de conception et/ou de planification donné. Le premier chapitre de la thèse propose un état de l'art concernant les travaux sur le couplage des processus de conception de systèmes et de planification des projets associés et expose la problématique de nos travaux. Deux partie traitent ensuite, d'une part, des connaissances méthodologiques et, d'autre part, des connaissances métier. La première partie expose trois types de couplages méthodologiques. Le couplage structurel propose de formaliser les entités de conception et de planification puis permet leur création et leur association. Le couplage informationnel définit les attributs de faisabilité et de vérification pour ces entités et synchronise les états de ces dernières vis-à-vis de ces attributs. Enfin, le couplage décisionnel consiste à proposer, dans un même espace et sous forme de tableau de bord, les informations nécessaires et suffisantes à la prise de décision par les acteurs du projet de conception. La seconde partie propose de formaliser, d'exploiter et de capitaliser la connaissance métier. Après avoir formalisé ces connaissances sous forme d'une ontologie de concepts, deux mécanismes sont exploités : un mécanisme de réutilisation de cas permettant de réutiliser, en les adaptant, les projets de conception passés et un mécanisme de propagation de contraintes permettant de propager des décisions de la conception vers la planification et réciproquement.The work presented in this thesis deals with aiding system design, development project planning and its coupling. Aiding design and planning is based on the formalization of two kind of knowledge: methodological knowledge that can be used in all kind of design projects and business knowledge that are dedicated to a particular kind of design and/or planning. The first chapter presents a state of the art about coupling system design process and project planning process and gives the problem of our work. Then, two parts deal with design and planning coupling thanks to, on one hand, methodological knowledge, and on the other hand, business knowledge. The first part presents three types of methodological coupling. The structural coupling defines design and planning entities and permits its simultaneous creation of and its association. The informational coupling defines feasibility and verification attributes for these entities and synchronizes its attribute states. Finally, the decisional coupling consists in proposing, in a single dashboard, the necessary and sufficient information to make a decision by the design project actors. The second part proposes to formalize, to exploit and to capitalize business knowledge. This knowledge is formalized with ontology of concepts. Then, two mechanisms are exploited: a case reuse mechanism that permits to reuse and adapt former design projects and a constraint propagation mechanism that allows propagating decisions from design to planning and reciprocally

    Synchronization of system design and project planning: Integrated model and rules

    No full text
    International audienceThis article proposes a model dealing with the synchronisation of system design process and project planning process. This synchronisation is named synchronous coupling and is based on the assumption which states that a mapping exists between system Bill Of Materials and projects Work Breakdown Structure. Synchronous coupling ensures a consistency in the monitoring and the control of the system design and project planning by imposing synchronous milestones during the project development. The synchronous coupling is based on the definition of three states for each design and project entity following feasibility and verification criteria, and can thus manage the changes between states. Some rules are defined (precedence and coupling rules) to forbid certain changes when they are inconsistent and to synchronize them

    System design and design planning : an interaction identification

    No full text
    International audienc

    Proposal for an integrated case based project planning

    No full text
    International audienceIn previous works [14], models and processes enabling to make interacting a project planning process with the system design one have been presented. Based on the idea that planning and design processes can be guided by consulting past experiences, an integrated case-based approach for coupled planning project and system design processes is proposed in this article. The proposal is firstly based on an ontology of concepts that permits to gather and capitalize knowledge about objects to design, i.e. tasks and systems. Secondly, the integrated case-based process is presented taking into account planning of tasks and tasks of design. For the retrieve task, a compatibility measure between requirements and past cases is calculated. It is based on the semantic similarity between past and required concepts as well as past solutions and new requirements. Finally, integrated adaptation and retention of new solution(s) are done
    corecore