
Any correspondence concerning this service should be sent to the repository administrator:

staff-oatao@inp-toulouse.fr

Identification number: DOI : 10.1017/S0890060413000498

Official URL: http://dx.doi.org/10.1017/S0890060413000498

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/

Eprints ID: 10714

To cite this version:

Romero Bejarano, Juan Camilo and Coudert, Thierry and Vareilles, Elise and

Geneste, Laurent and Aldanondo, Michel and Abeille, Joël Case-based

reasoning and system design: An integrated approach based on ontology and

preference modeling. (2014) Artificial Intelligence for Engineering Design,

Analysis and Manufacturing, vol. 28 (n° 1). pp. 49-69. ISSN 0890-0604

Open Archive Toulouse Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/19892658?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Case-based reasoning and system design: An integrated

approach based on ontology and preference modeling

JUAN CAMILO ROMERO BEJARANO,1,2 THIERRY COUDERT,2 ELISE VAREILLES,3

LAURENT GENESTE,2 MICHEL ALDANONDO,3 AND JOËL ABEILLE2

1Axsens, Toulouse, France
2Ecole Nationale d’Ingenieurs de Tarbes, University of Toulouse, Tarbes, France
3Mines-Albi, University of Toulouse, Toulouse, France

Abstract

This paper addresses the fulfillment of requirements related to case-based reasoning (CBR) processes for system design.

Considering that CBR processes are well suited for problem solving, the proposed method concerns the definition of an

integrated CBR process in linewith system engineering principles. After the definition of the requirements that the approach

has to fulfill, an ontology is defined to capitalize knowledge about the design within concepts. Based on the ontology, mod-

els are provided for requirements and solutions representation. Next, a recursive CBR process, suitable for system design, is

provided. Uncertainty and designer preferences as well as ontological guidelines are considered during the requirements

definition, the compatible cases retrieval, and the solution definition steps. This approach is designed to give flexibility

within the CBR process as well as to provide guidelines to the designer. Such questions as the following are conjointly

treated: how to guide the designer to be sure that the requirements are correctly defined and suitable for the retrieval

step, how to retrieve cases when there are no available similarity measures, and how to enlarge the research scope during

the retrieval step to obtain a sufficient panel of solutions. Finally, an example of system engineering in the aeronautic

domain illustrates the proposed method. A testbed has been developed and carried out to evaluate the performance of

the retrieval algorithm and a software prototype has been developed in order to test the approach. The outcome of this

work is a recursive CBR process suitable to engineering design and compatible with standards. Requirements are modeled

by means of flexible constraints, where the designer preferences are used to express the flexibility. Similar solutions can be

retrieved even if similarity measures between features are not available. Simultaneously, ontological guidelines are used to

guide the process and to aid the designer to express her/his preferences.

Keywords: Case-Based Reasoning; Design; Ontology; Preferences; Retrieval; System Engineering

1. INTRODUCTION

This paper focuses on a case-based reasoning (CBR) process

for system design. The analysis of experience feedback (EF)

of information regarding prior projects in system design per-

mits users to make decisions very early regarding the feasi-

bility of a new project (Girard & Doumeingts, 2004; Kam &

Fischer, 2004). In such a context, CBR processes (Kolodner,

1993; Aamodt & Plaza, 1994) are mainly used to support de-

sign processes. They are knowledge-based methods used suc-

cessfully in industry (see, e.g., Althoff & Weber, 2005; Liu &

Ke, 2007; Armaghan & Renaud, 2012; Gu et al., 2012).

The work proposed in this article has been done consider-

ing a broader problematic defined within the ATLAS project

consortium from 2008 to 2011. The ATLAS consortium in-

volved five French academic institutions and two enterprises,

funded by the French government and supported by the world

competitiveness cluster Aerospace Valley. Therefore, the

kind of systems this approach is dealing with are mainly in

the aeronautic domain. The global approach proposed in the

ATLAS project is based on the joint realization of a system

design process and the associated project of design as well

as the planning of this project (see Abeille et al., 2010; Cou-

dert, Vareilles, Aldanondo, et al., 2011; Coudert, Vareilles,

Geneste, et al., 2011). Moreover, the ATLAS project high-

lighted requirements about EF models and tools to aid engi-

neering design. It also led to the development of a software

prototype for the testing and the validation of the proposals.
Reprint requests to: Thierry Coudert, ENIT, 47 Avenue d’azereix, 65016

Tarbes Cedex, France. E-mail: thierry.coudert@enit.fr

Taking a CBR viewpoint, requirements for a new system to

be developed are considered as a problem to solve, and CBR

systems permit users to retrieve similar cases from a case base

and to adapt them to provide new solutions. However, design

processes are based on sound academic models as well as

standards such as EIA-632, ISO-15288, and INCOSE. First,

such standards and models are not integrated with CBR prin-

ciples. Second, in CBR, a new problem is solved by identify-

ing some common features between this initial problem and

some previous solved problems. Most of the time, it is diffi-

cult to formally define the problem of design without ambigu-

ity. At the earliest step of design, many uncertainties remain,

requirements are difficult to formalize, and suitable prior de-

sign solutions are difficult to identify even when they could

be helpful. Furthermore, the retrieval step within standard

CBR processes is based on similarity measures between fea-

ture values. That means that this information is available or

that methods exist to compute the values (Bergmann,

2002). When values are symbolic, it is generally considered

that experts are able to provide similarity measures, but in

practice, this is very difficult and time consuming. In such

a context, some questions can arise for the designer: How

can suitable prior cases be identified early in the process if

uncertainty remains? How can a new problem be compared

with prior solutions if similarity measures are not available?

How can preferences be expressed during retrieval? Are there

some guidelines to properly define requirements and solu-

tions for systems with a clear and unambiguous semantic?

How can knowledge about the design activity that can be re-

used be capitalized? When an engineering design standard is

chosen for system development, how are CBR tools used?

Some questions have been answered in the literature, but as

far as we know, they have been answered separately. Thus,

the three macrorequirements this paper is dealing with are

the following:

† to define ontological guidelines to capitalize knowledge

and to aid engineers to develop new systems;

† to propose a fully integrated CBR approach for system

design based on suitable engineering design standards;

and

† to take into account uncertainty, a lack of similarity mea-

sures, and designer preferences during the different steps

of the integrated CBR approach.

The paper is organized in four sections. In Section 2, mod-

els, standards, and academic design processes as well as CBR

process are presented. Then, in the light of the bibliographic

background, discussions and definitions of the three require-

ments that the proposed method addresses are presented. In

Section 3, the models for system design knowledge represen-

tation with regard to the requirements are presented. The recur-

sive CBR (RCBR) process is detailed in Section 4. In Section

5, an example is presented to illustrate the proposed method.

The experiments on the retrieval algorithm are also presented.

Conclusions and perspectives are presented in Section 6.

2. MODELS, PROCESSES, STANDARDS, AND

KNOWLEDGE MANAGEMENT (KM) FOR

SYSTEM DESIGN AND BACKGROUND AND

REQUIREMENTS FOR CBR

2.1. Methodologies and standards for engineering

design

Design can be seen as a search process (Simon, 1969) corre-

sponding to a project that aims to create or realize a new ob-

ject or transform an existing one (Huysentruyt & Chen,

2010). Design is also considered as a knowledge discovery

process in which information and knowledge of diverse

sources are shared and processed simultaneously by a team

of designers involved in the life phases of a product (Tang,

1997; Wang et al., 2006).

There are many existing design methodologies described

in the literature (see, for instance, Suh, 1990; Pahl & Beitz,

1984; Dieter, 2000; Ullman, 2003). However, all the design

processes are based on the following activities: knowing

and understanding the customer’s requirements, defining

the design problem to solve, conceptualizing the solution(s),

analyzing to optimize the chosen solution, and verifying the

obtained solution with respect to the requirements (Suh, 1990).

From a systems engineering viewpoint, the EIA-632 stan-

dard provides some structuring processes for system design

(see Martin, 2000) suitable in the aeronautic domain. The ap-

proach is based on the following premises:

† a system is composed of one or more products that are an

integrated composite of hierarchical elements that have

to meet the defined stakeholder requirements; and

† the engineering of a system is achieved by applying a set

of processes to each element of the system hierarchy by a

multidisciplinary team of people who have the required

knowledge and skills.

When a decomposition is required, requirements are de-

composed as well and dedicated to each subsystem to design.

For each system to design, requirements are first verified and

then validated. Then, the integration of subsystems can be

achieved only if requirements dedicated to each subsystem

have been verified and validated. That guarantees that the de-

sign of the systemmeets the overall system requirements. This

approach is incrementally applied in an engineering life cycle

framework. To tackle the product complexity, modular

product architectures are used (Huang & Kusiak, 1998).

That facilitates the creation of complex product architectures

by developing hierarchical subsystems that can be designed

independently (Mondragon et al., 2009). As mentioned in

Chandrasegaran et al. (2013), the increasing complexity in

products (or systems) leads to distributed and heterogeneous

collaborative design environments. System engineering pro-

cesses permit management of the concurrent design activities

induced by such environments. Therefore, developing one

system corresponds with one system engineering process.

To split the system into many subsystems developed by spe-

cific teams and skills leads to many system engineering sub-

processes having to be carried out (Abeille et al., 2010; Cou-

dert, Vareilles, Geneste, et al., 2011). More recent standards

are broader than EIA-632, covering the entire product life cy-

cle (see, e.g., the standard ISO-15288; ISO, 2008) or the IN-

COSE Systems Engineering Handbook (Haskins, 2011).

Such standards are fully compatible with EIA-632 and de-

compose the technical process for engineering a system into

subprocesses: stakeholder requirements definition, require-

ments analysis, architectural design, implementation, integra-

tion, verification, transition, validation, operation, mainte-

nance, and disposal. In this study, only the subprocesses

“stakeholder requirements definition” to “validation” are con-

cerned. Then, in order to be compatible with engineering

standards in this article, the system design process is decom-

posed into a requirements definition process and a solution

definition process. The requirements definition process ad-

dresses activities that define requirements from the customer

or acquirer, from stakeholders, and from technical engineers.

The solution definition process gradually and recursively

leads to the technical solutions. The choice of a CBR process

for KM is justified in the next section.

2.2. System design and knowledge

Engineering design processes use creativity, scientific princi-

ples, technical knowledge, and experience (Chen et al.,

2008). In a recent survey, Chandrasegaran et al. (2013)

describe explicit and tacit knowledge. Explicit knowledge

is embedded in product documents, repositories, problem

solving routines, computers algorithms, and so on. Tacit

knowledge is a kind of knowledge tied to experiences, intui-

tion, unarticulated models, or implicit rules of thumbs and is

necessary to create new value in a product. This knowledge is

generally retained by actors as personal experience that has to

be extracted, capitalized, and exploited (Brandt et al., 2008;

Foguem et al., 2008). Knowledge capitalization attempts to

reuse, in a relevant way, a given domain knowledge pre-

viously stored and modeled (Dalkir, 2005). Knowledge ex-

ploitation attempts to disseminate knowledge to support cur-

rent practices and to train future practitioners.

EF is a type of KM that permits experiential knowledge or

lessons learned to be applied at an operational, tactical, or

strategic level (Bergmann, 2002). EF is a bottom-up ap-

proach, where knowledge is built gradually from useful cases.

The gradual transformation is done in three steps. The studied

event and its context are described (information level), and

then the analysis and solution are capitalized (experience

level). The knowledge level is reached when lessons learned,

procedures, invariants, and rules are inferred from past

experiences (Foguem et al., 2008). During the definition of

a new experience, prior capitalized experiences are taken

into account in order to be reused. Different approaches exist:

experiential learning (Kolb, 1984), lessons-learned systems

(Weber et al., 2001), EF loops (Faure &Bisson, 1999; Rakoto

et al., 2002; Jabrouni et al., 2009, 2011), or trace-based rea-

soning (Cordier et al., 2009; Settouti et al., 2009). In order

to support such a process, tools as CBR are suitable for aiding

the definition of experiences, their capitalization, and their fu-

ture reutilization. According to Kolodner (1993), “[A] case is

a contextualized piece of knowledge representing an experi-

ence that teaches a lesson fundamental to achieving the goals

of the reasoned.” These viewpoints lead us to consider EF as a

powerful approach, contributing to KM and CBR as a rele-

vant tool to support this approach. Thus, the proposed ap-

proach is based on EF principles to manage the knowledge

about design processes. CBR is chosen as a tool to benefit

from prior design solutions to fulfill new requirements for a

system to be designed so that it closely matches the user re-

quirements. The standard CBR process is presented in the

next section.

2.3. CBR for system design

The CBR model (Kolodner, 1993; Aamodt & Plaza, 1994)

considers that the solution to the most similar prior problem,

adapted if necessary to take into account differences in prob-

lem descriptions, is selected as the proposed solution to the

target problem (Leake & McSherry, 2005). Therefore, this

methodology attempts to solve a new problem following a

process of retrieval and adaptation of previously known so-

lutions of similar problems. Usually, CBR systems are de-

scribed by a cycle with main phases (Aamodt & Plaza, 1994;

Finnie & Sun, 2003): problem definition, retrieval, reuse,

revision, and retention. These five phases are defined below.

† Problem definition:When a problem arises, it is charac-

terized so that it can be compared to problems in the case

base.

† Retrieval: According to the new problem, the CBR sys-

tem retrieves, from a case base, previous cases that are

fairly similar to the new problem. The main challenge

is to define how the CBR system compares the new

case with prior ones, particularly when many uncertain-

ties remain.

† Reuse:Most of the time, the solution of a retrieved case

that fulfills the requirements of the new problem has to

be adapted. The outcome is a solved case. It is generally

considered as a key activity (Policastro et al., 2006).

Some rules are generally defined for adapting prior solu-

tions to new problems (Ruet & Geneste, 2002). These

rules are difficult to define and to use because of the

changing context of the different problems.

† Revision: The solved case has to be revised and is trans-

formed into a revised case or, in other words, a sug-

gested solution is transformed into a confirmed solution.

† Retention: The CBR system can learn the new case by its

incorporation into the case base.

The requirements this paper is dealing with are presented in

the next section.

2.4. CBR requirements for system design

The approach presented in this article is based on the simul-

taneous fulfillment of three requirements. They are defined in

the light of the bibliographic background and are discussed

below.

2.4.1. Requirements for integration of CBR process and

system engineering process

In the past decades, many works have been dedicated to

case-based design. Comprehensive reviews can be found in

Maher and Gomez de Silva Garza (1997), Goel and Craw

(2006), and Saridakis and Dentsoras (2007). Many ap-

proaches use standard “function-based” methodologies, com-

bining them with CBR methods. The approach proposed by

Gomez De Silva Garza and Maher (1996) mixes function–

behavior–structure (see Gero, 1990) and CBR. Chen et al.

(2008) used a functional requirement-based model mixed

with CBR. Janthong et al. (2010) combined axiomatic design

and CBR to provide an integrated methodology. Other ap-

proaches combine the TRIZ method (Altshuller, 1996),

with CBR (Gao et al., 2006; Cortes-Robles et al., 2009;

Yang & Chen, 2011). Computer-aided design systems can

also benefit from CBR methodologies (Lee & Luo, 2002;

Mileman et al., 2002; Qin & Regli, 2003; Woon et al.,

2005; Mok et al., 2008; Guo et al., 2012).

Regarding the recursive aspect of the system engineering

process (Section 2.1), a review of approaches based on a

partonomic hierarchy of cases is presented in Maher and

Gomez de Silva Garza (1997). In the works of Stahl and

Bergmann (2000), a RCBR is proposed for solving a

product configuration problem. The initial problem is de-

composed into a hierarchy of subproblems, and the system

retrieves a solution. If there are unsolved subproblems, the

system is recursively carried out to find subsolutions. How-

ever, the problem structure has to be completely defined at

the beginning of the process. Within computer-aided design

systems, approaches for assembly retrieval take into account

composite products (see a panorama in Chen et al., 2012).

They are based on a rough query with vague components

and main relationships. However, at the beginning of the

engineering process of a system, the future structure of a sys-

tem can be unknown and designed later, if necessary, by

other teams of designers with their own skills. Therefore,

the first requirement this paper is dealing with is expressed

as follows:

REQUIREMENT R.1. The CBR process should be integrated

with modular and hierarchical engineering design processes:

systems should be reused, level after level, following a system

engineering standard. The decomposition of a system into

subsystems leading to define subrequirements should be

used to retrieve similar solutions from the case base. These

solutions should be adapted to fulfill the subsystems require-

ments. This process should be recursively carried out each

time a decomposition is required. B

2.4.2. Requirements for integration of designer’s

preferences within requirements definition process

When designers use a CBR approach, the problem repre-

sentation can be incomplete, uncertain, imprecise (Dubois

et al., 1997; Nanda et al., 2007; Chang et al., 2008), and sub-

ject to preferences (Junker & Mailharro, 2003; Benferhat

et al., 2006; Domshlak et al., 2011). Many case-based design

approaches are based on the assumption that experts are able

to define a similarity measure between two values for a fea-

ture, an attribute, or an object. Then, aggregation mechanisms

provide similarity measures between a target and a source

case (Bergmann, 2002). However, in an industrial context,

experts encounter difficulties in defining such similarities be-

cause of the subjective nature of this task (Sun et al., 2008).

Most of the CBR approaches for design are based on the as-

sumption that the requirements are well identified and known

(an exhaustive list of feature-value pairs), but most of the

time, this situation is not realistic (Xuanyuan et al., 2011).

During the requirements definition phase, some features are

not yet identified and requirements can be ill structured or

partially defined. They are refined through the design process

as the designer’s understanding of the problem is improved

(Gomez De Silva Garza & Maher, 1996). In such a context,

fuzzy CBR approaches can be helpful (see, e.g., Dubois

et al., 1997, 1998; Ruet & Geneste, 2002; Sun et al., 2008;

Wu et al., 2008; Zarandi et al., 2011). The fuzzy set theory

is used to model uncertainties or preferences on attributes val-

ues and/or fuzzy similarity measures (see, e.g., Wang, 1997;

Liu, 2005; Avramenko & Kraslawski, 2006; Negny & Le-

Lann, 2008; Negny et al., 2010). However, uncertainty, pref-

erence, or similarity has to be modeled by the designer for

each attribute describing the problem.

In system engineering, requirements represent the bounda-

ries of the problem to solve or the goals that should be reached

by the solution. In this paper, they are modeled by means of a

set of constraints (e.g., such models are described in Thorn-

ton, 1996; Chenouard et al., 2009). A constraint describes

the allowed or forbidden values of a set of variables. The re-

quirements have to be very close to the customer needs, but if

they are too crisp, some suitable cases can be mismatched

during the retrieval step. Therefore, designers in charge of re-

quirements definition should be able to introduce flexibility to

retrieve a sufficient number of diverse cases for reuse. This

flexibility can be expressed using flexible constraints (Dubois

et al., 1996) rather than on the attributes values that define the

problem. That permits the designer to: take into account the

unavailability of similarity measures between attributes val-

ues, efficiently express her/his preferences and model uncer-

tainties directly on the constraints that model the require-

ments, and to enlarge the scope of the retrieval. Therefore,

the second requirement is defined as follows:

REQUIREMENT R.2. To take into account uncertainty and the

unavailability of similarity measures, and to enlarge the scope

of retrieval, flexible constraints defined from the customer’s

needs and the designer’s preferences should be used in order

to model the requirements. Compatibility measures between

these flexible constraints and solutions should be computed

in order to guide the designer to retrieve similar and suitable

solutions. B

2.4.3. Requirement for the use of an ontology

For a panorama of the use of ontology in design, the reader

can refer to Uschold and Gruninger (1996), Kim et al. (2006),

and Brandt et al. (2008). The explicit specification of a con-

ceptualization is called an “ontology,” that is, a consensually

determined, structured set of terms (“concepts”) shared by a

community of experts to express semantic information (Stu-

der et al., 1998). An ontology may provide a formal semantic

representation of the objects for case representation in CBR

methodologies as in Lau et al. (2009). To be shared and un-

derstood by different actors, requirements and solutions

should manipulate some standard concepts with a common

and unambiguous understanding. Therefore, ontologies can

be used to capitalize such knowledge and guide the require-

ments definition task and the solution definition task. Thus,

defining a new case can be performed with less ambiguity

using such an ontology for supporting requirements defini-

tion (Darlington & Culley, 2008), for preferences modeling

as in Cao et al. (2011), and for solutions modeling. Therefore,

a concept should be associated to the requirements and a con-

cept should be associated to each solution within a case.

In order to take into account the differences between the re-

quirements and a solution during retrieval (number and type

of features, conceptual gap, etc.) the similarity should be first

evaluated at the conceptual level, comparing both concepts.

There are many efficient methods to evaluate the similarity

between two concepts described in the literature (Wu & Pal-

mer, 1994; Cordi et al., 2005; Batet et al., 2011). Based on

such similarity measures, the designer should be able to ex-

press her/his preferences on the concepts. Therefore, only

the solutions with a sufficient conceptual similarity and/or

preference should be selected for a deeper comparison. The

third requirement is then expressed as follows:

REQUIREMENT R.3. The CBR process should be based on an

ontology to assist the requirements definition process, facili-

tate the standardization and reusability for solution develop-

ment processes, and facilitate the retrieval step. Associating

concepts to the requirements and to the solutions should be

done in order to use the knowledge embedded in these con-

cepts during the design process. The retrieval step should

be split in two consecutive phases: the selection of solutions

based on conceptual similarity measures and/or preferences,

and the deep comparison between requirements and the pre-

selected solutions. B

As far as we know, there is no approach in the literature that

fulfills simultaneously these three requirements in the domain

of case-based system engineering. The next sections aim at

fulfilling them. The knowledge and information formalisms

used for system design are presented in the next section.

3. SYSTEM KNOWLEDGE REPRESENTATION

BASED ON AN ONTOLOGY OF CONCEPTS

3.1. Proposed ontology

For the proposed method, a concept is a part of abstract

knowledge suitable for design. A concept represents general

characteristics about an object to be designed at a very ab-

stract level. The purpose of a concept is to guide design teams

in collecting requirements and, ultimately, to develop solu-

tions. By offering a panel of well-structured and unambigu-

ous concepts with a clear semantic within an ontology, the

work of designers is improved. Designers are informed about

descriptors of objects they have to design and of allowed and

forbidden changes to the object characteristics.

Thus, the knowledge embedded into a concept c is forma-

lized by

† a set (denoted by nc) of models of conceptual variables.

Each model of variable can be considered as a descriptor

of the concept c. It corresponds to a general characteris-

tic of an abstract object.

† a set (denoted by Dc) of models of domains (one model

of domain for each model of a conceptual variable). A

model of a domain represents the authorized values of

a model of a conceptual variable.

† a set (denoted by Sc) of models of conceptual con-

straints related to some models of conceptual variables.

A model of a conceptual constraint is a formal piece of

knowledge that links one or many models of conceptual

variables giving some authorized (or forbidden) combi-

nations of values.

The class diagram representing a concept and its characteris-

tics is represented in Figure 1.

The proposed ontology is a hierarchical structure of con-

cepts representing a taxonomy. The root of the ontology is

the most general concept, named the System. The System con-

cept has no parents. The concepts are linked by edges that

represent relations of generalization/specialization. Any con-

cept inherits all the characteristics of its parents. Somemodels

are inherited from the ancestors and other ones are specific.

Fig. 1. A class diagram representing the characteristics of a concept in the

ontology.

Let C1 and C2 be two concepts of the ontology such that C2 is

a descendent ofC1. All the models of variables, domains, and

constraints of C1 are duplicated into C2. Furthermore, C2 can

contain specific models.

It is important to notice that the relations between concepts

are not represented (except the hierarchical links). However,

because the knowledge is embedded in the concepts (models

of variables, domains, and constraints), the term ontology is

maintained. An example of a partial ontology of concepts is

represented in Figure 2.

An ontology has to be built and maintained by experts of

the domain. The reader can refer to Uschold and Gruninger

(1996), Richards and Simoff (2001), and Darlington and Cul-

ley (2008) for an overview of such a task. This aspect is not

described in this paper, and it is assumed that a KM process

permits designers to define, maintain, and use the ontology.

For the proposed method, a concept is used to guide the def-

inition of requirements (Section 4.2.1), to permit the retrieval

of compatible solutions (Section 4.2.2), and to guide the def-

inition of solutions (Section 4.2.3).

3.2. System modeling

Derived from EIA-632 standards, the following model is used

to define the required entities of design (Fig. 3). A System is

composed of a set of Requirements and of one or many Solu-

tions. Many Solutions can be developed for the same System,

leading to many competitive alternatives.

A Solution can be composed of two or more subsystems. If

a system is too complex to be designed without decomposi-

tion (the problem of capacities or competencies of the design

team, for instance), it is split into as many subsystems as re-

quired. For each subsystem, the requirements have to be de-

fined from higher level requirements. A hierarchical and com-

posite solution is then obtained by an activity of integration of

subsystems or, more exactly, of solutions corresponding to

the subsystems. The descriptions of the requirements and

the solutions are refined in the next sections.

3.2.1. Requirements modeling

For a system to be designed, the set of requirements is

defined by means of (1) a requirements concept (RC), (2) re-

quirements variables associated with their domain, and (3) re-

quirements constraints. The RC represents the object to be de-

signed at an abstract level. Requirements variables are either

copies of models of variables coming from the RC (named

conceptual requirements variables) or new requirements vari-

ables added by the designer to better characterize the require-

ments (named added requirements variables). Variables do-

mains are either copies of models of domains (named

conceptual domains) or domains of new added requirements

variables (named added domain). The requirements con-

straints are either copies of models of conceptual constraints

(named conceptual requirements constraints) or new require-

ments constraints added by the designer to represent a specific

customer need (named added requirements constraints). A re-

Fig. 2. An example of an ontology of concepts.

Fig. 3. The metamodel of the design entities.

quirements constraint is associated with one or many ordered

requirements variables, and a requirements variable can be in-

volved in many requirements constraints. The different enti-

ties are represented in the class diagram in Figure 4.

Therefore, by choosing a concept and associating it with

the requirements (and, furthermore, to a system), the designer

knows what are the conceptual requirements variables and

their domain as well as the conceptual requirements con-

straints. This information guides the designer in eliciting

the requirements and in formalizing them by means of con-

straints. Because the characteristics of a requirements concept

are generic and abstract, the designer can add other require-

ments variables and constraints to properly define the system

requirements. Based on the ontology, this requirements

model fulfills the requirement R.3 (Section 2.4). The descrip-

tion of solutions is given in the following section.

3.3. Solutions modeling

A solution corresponding to a system to be developed is rep-

resented by means of a solution soncept, solution variables

and their domains, solution constraints to be satisfied, and

values of solution variables. The different entities are repre-

sented in the class diagram in Figure 5.

Fig. 4. The model of requirements.

Fig. 5. The solution model.

1. Solution concept: A solution, within a system, is asso-

ciated with a concept, named the solution concept

(SoC), which is an abstract view of the solution. Each

solution is associated with its own solution concept.

There is a constraint between the RC and each solution

concept SoCi corresponding to a solution Soli : the con-

cept SoCi is either the concept RC itself or one of its

descendents into the ontology (denoted by SoCi �
RC in this paper). However, SoC can be the same as

RC if it is not possible to find the required specialized

concept in the ontology.

2. Solution variables: Some solution variables are copies

of models of conceptual variables coming from SoC

(conceptual solution variables). Added requirements

variables are copied into each solution (copy of added

requirements variables). If necessary, new solution

variables (associated with their domain) can be added

by the designer to a solution to better characterize it

(added solution variables). Therefore, within a solution,

the set of solution variables contains copies of all re-

quirements variables used to characterize the require-

ments and variables specific to the solution (copies of

models of conceptual variables that are specific to

SoC and added solution variables).

3. Solution constraints: Within a solution, the set of solu-

tion constraints contains the copies of models of con-

ceptual constraints coming from SoC (conceptual solu-

tion constraints), the copies of added requirements

constraints, and the added solution constraints. A con-

straint can be added by the designer in a solution

when it is derived from the solution itself. For instance,

the choice of a material can impose a new constraint on

the solution dimensions. This new constraint is derived

from the design solution. Therefore, a solution contains

the copies of all the requirements constraints and the

constraints that are specific to the solution. Some con-

straints are conceptual ones, and other ones are added

by the designer. By embedding the entire set of con-

straints into a solution, it is possible to develop a solu-

tion that will ensure all these constraints are satisfied.

4. Values of solution variables: Within a solution, during

the design process, the designer has to determine for

each solution variable a value that must belong to its do-

main and satisfy all the solution constraints (thus, the re-

quirements constraints). Therefore, an n-tuple of values

represents the solution. To validate it, the n-tuple of val-

ues must satisfy all the constraints.

3.4. Case modeling

The results of each system development activity have to be

capitalized in a case base for further reuse. Systems can be de-

composed into subsystems during the solution development.

Therefore, the structure of cases is also hierarchical as pro-

posed in Macedo and Cardoso (1998). The cases are nested

as well as systems. A case gathers the information about the

system, its set of requirements, and its set of solutions.

Thus, if a solution to reuse is composed of many subsystems,

the CBR process is carried out for each subsystem in order to

be sure that subcases can be reused. This point is important

because, even if the complete hierarchy of systems and sub-

systems is reused, it ensures that, at each level, the require-

ments dedicated to a system are fulfilled by a solution.

Even when reusing, some changes can occur in requirements

following norms or stakeholders evolutions. Some subassem-

blies can be obsolete or their suppliers may not supply them

anymore. Some adaptations then have to be made to existing

solutions. An example of nested cases is given in Figure 6.

The definitions of the ontology and the models for require-

ments and solutions fulfill requirement R.3 (Section 2.4).

Fig. 6. An example of the two-level nested-cases model.

4. FROM THE EIA-632 STANDARD TOWARD A

RCBR PROCESS FOR SYSTEM DESIGN

4.1. RCBR process

Considering that CBR is suitable for system design, an inte-

grated CBR process is proposed for system design activities.

In Figure 7, three processes are represented: EIA-632, CBR,

and the proposed RCBR process for system design. In the pro-

posed method, the requirements definition process defines the

target problem by means of models that represent require-

ments. The compatible cases retrieval process permits search-

ing among the past solutions (source cases) those that are more

or less compatible with the new (flexible) requirements (i.e.,

the target case). Then, the solution definition process has to

be carried out with the retrieved compatible cases. This process

permits the definition of (several) solution(s) from the retrieved

solutions. During this process, if a decision to split the consid-

ered system into subsystems is taken because of its inherent

complexity, a decomposition is performed. For each subsys-

tem, a new RCBR process is then carried out. Once solutions

are defined, the RCBR process ends by verifying, validating,

and capitalizing the experiences of the development.

Considering the example of Figure 6, at the higher level,

the main RCBR process develops the system S1. It carries

out the RCBR process five times for the development of

the subsystems (S11, S12, S21, S22, and S23). The develop-

ment of a solution is split into three parts: the solution devel-

opment, the subsystems development, and the integration of

the subsystems. The example is summarized in Figure 8.

4.2. Detailed description of the RCBR subprocesses

4.2.1. Requirements definition process: An ontology and

preference-based approach

The set of needs expressed by the customer and/or other

stakeholders has to be translated into technical requirements.

At the earliest stage, the RC corresponding to the future sys-

tem to be developed is chosen in the ontology. The designer

(or the team in charge of requirements definition) has to

gather as much information as possible, taking into account

the knowledge embedded in the ontology and her/his own

preferences. The requirements definition process is repre-

sented in Figure 9 using the Business Process Model and No-

tation formalism.

The inputs of the process are either a set of customer/stake-

holder needs or a set of subsystem requirements. For the lat-

ter, the requirements definition process is realized for the de-

velopment of a subsystem that will be integrated into a higher

level system. In that case, the designer has to elicit the require-

ments provided by the designer of the higher level (task T1).

The next task consists of choosing the RC among all the con-

cepts in the ontology (this set of concepts is named C) that

corresponds to the new system to design (task T2). This

choice initiates the requirements definition task (task T3)

from conceptual models. During T3, the designer can add

variables and constraints other than the conceptual ones.

The outcomes of T3 are crisp requirements, that is, a set of

crisp requirements constraints (named s ¼ fsig), and the

RC (RC has been defined during T2). The next task is the re-

quirements constraints relaxation (task T4). This task takes

into account designer preferences and/or similarity measures

coming from the ontology to provide flexible requirements

constraints (such a constraint is named a soft fuzzy constraint

in Dubois et al., 1996) and similar or preferred concepts to the

retrieval mechanism.

Finally, the outcomes of the requirements definition pro-

cess are the following:

† Cc: the fuzzy set of compatible concepts,

† mCc
: the membership function related toCc, the fuzzy set

of compatible concepts in C to be used during the re-

trieval task. The membership function mCc
(c) character-

Fig. 7. The system design process, case-based reasoning (CBR) process, and recursive CBR process for design.

izes the degree to which a concept c of the ontology (c[

C) is compatible with the new requirements and such

that mCc
: C ! [0, 1],

† s: the set of crisp constraints that model the requirements,

† ms: the set of membership functions related to the set of

requirements constraints s, such thatms ¼ fmsi
g, where

msi
is the membership function related to a requirements

constraint si. It characterizes the fuzzy set of compatible

values (or n-tuples of values) taken by the requirements

variables with regard to the constraint si,

† ~s: the set of flexible constraints.

Steps to evaluate the function mCc.

1. Step 1: The concept RC is defined as fully compatible:

mCc(RC) ¼ 1.

2. Step 2: The compatibilities of the descendent concepts

of RC in the ontology are computed by evaluating their

membership functions from semantic similarities. Dif-

ferent methods to evaluate conceptual similarities be-

tween two concepts of a taxonomy or an ontology are

described, for instance, inWu and Palmer (1994), Cordi

et al. (2005), and Batet et al. (2011). Among all the ap-

Fig. 9. The requirements definition process.

Fig. 8. An example of the two-level nested-cases model and the associated recursive case-based reasoning (RCBR) processes.

proaches, a very simple and efficient one is the measure

of Wu and Palmer, which is based on the distance (ex-

pressed in terms of the number of arcs) between the two

concepts being compared and the depths of the con-

cepts in the ontology (with regard to the root concept).

The similarity between two concepts C1 and C2 is de-

fined by Eq. (1):

sim(c1, c2) ¼
2� depthSystem(ccom)

depthSystem(c1)þ depthSystem(c2)
, (1)

such that

† depthsystem(ci) is the distance (i.e., the number of arcs)

between the concept named System and the concept

ci and

† ccom is the least common ancestor of c1 and c2 in the

ontology.

The efficiency of the measure is based on a well-structured

hierarchy of concepts. Therefore, the similarity measure of

Wu and Palmer is used to define the membership functions

of all the descendents of RC (this set is named descendents

of RC, or DoRC). The membership function of each concept

ci, a descendent of RC, is defined by Eq. (2):

mCc
(ci) ¼ sim(RC, ci) 8ci [DoRC: (2)

3. Step 3: For the remaining concepts of the ontology (i.e.,

the set named Cÿ such that Cÿ
¼ C\(RC), the designer

has the option to express her/his preferences by setting

the degree to which she/he allows each concept to be

used during the retrieval step. The more a concept cj is

preferred by the designer, the closer its degree of prefer-

ence, denoted by pref(cj)), is to 1. The membership func-

tion of a preferred concept cj is defined by Eq. (3):

mCc
(c j) ¼ pref (c j) 8cj [Cÿ: (3)

The similarity measure of Wu and Palmer between the

concept RC and the concept cj can be used as a guideline

to evaluate the preference. A similarity measure close to

1 indicates to the designer that a greater preference

should be given to the concept cj.

4. Step 4: For a concept cj(cj [Cÿ) with a degree of pref-

erence different from 0 and fixed by the designer, the

compatibility of each descendent of Cj in the ontology

(named Cjm, such that Cjm [Docj and Cjm Ó (DoRC<

RC) where Docj is the set of Descendent of cj) is com-

puted by multiplying the similarity between cj and cjm,

and the degree of preference given to cj. The member-

ship function corresponding to a concept cjm is defined

by Eq. (4):

mCc
(c jm) ¼ sim(c j, c jm)� pref (c j),

8c jm [Docj, c jm Ó (DoRC< RC): (4)

Definition of the fuzzy set of compatible values with regard

to a discrete constraint. It is considered in this article that

constraints representing requirements are discrete constraints

(Montanari, 1974; Gelle et al., 2000).

A discrete constraint on a set of symbolic or numeric vari-

ables defines a set of allowed n-tuples of values. Let si be a

discrete constraint that explicitly defines the allowed associa-

tions of values of a set of n discrete variables, denoted by Vsi
,

such that Vsi
¼ f v1,v2, . . . , vng. The set of domains of these n

variables, denoted byD, is such thatD¼ fDv1,Dv2, . . . ,Dvng.
Let Xa be a set of p allowed n-tuples of values for msi

such

that Xa ¼ f(x11, x12, . . . , x1n), (x21, x22, . . . , x2n), . . . ,
(xp1, xp2, . . . , xpn)g with xij a discrete symbolic or numeric

value of the variable vj in the n-tuple Ti. Let V
value
si

be an n-

tuple of values corresponding to the variables of Vsi
. The

crisp constraint si is defined by si : V
value
si

[Xa.

Therefore, from this crisp set of allowed n-tuples, the mem-

bership function msi
, which defines the fuzzy set of allowed

n-tuples, is defined using the preferences of the designer.

The membership function msi
is a mapping such that msi

:

Dv1�Dv2� . . .�Dvn ! [0, 1]. The steps to define the mem-

bership function msi
are the following:

1. Step 1: The value of the membership function msi is de-

fined for each allowed n-tuple Ti of Xa such that msi
(Ti)

¼ 1, 8Ti [Xa.

2. Step 2: For the disallowed n-tuples (this set is denoted

as Xna such that Xna ¼ (Dv1 �Dv2 � . . .�Dvn)\Xa,

the designer can express her/his preferences. A prefer-

ence for a n-tuple Tj (denoted by Pref(Tj)) is a value be-

tween 0 and 1 representing how much the n-tuple Tj is

preferred for the next retrieval step. The membership

function corresponding to a disallowed compatible n-

tuple Tj is defined by the Eq. (5):

msi
(Tj) ¼ Pref (Tj), 8Tj [Xna: (5)

Similarities are not taken into account to define this mem-

bership function because in the case of symbolic values, it is

quite difficult for experts to express a similarity measure be-

tween two symbols. It is simpler and more efficient to ask the

designer how she/he wants to express the flexibility of a dis-

crete constraint. The preference modeling is the first step for

the fulfillment of the requirement R.2 (Section 2.4).

4.2.2. Compatible cases retrieval process

From the compatible concepts and the flexible discrete

constraints expressed during the requirements definition pro-

cess, the compatible cases retrieval process can be carried out.

The aim is to identify, from the case base, the compatible so-

lutions with regard to the set of compatible concepts and with

the flexible constraints. The retrieval process is composed of

two sequential tasks: the preselection and the selection of

compatible solutions. The compatible cases retrieval process

is represented in Figure 10.

a. The preselection of compatible solutions:With regard to

the set of compatible concepts Cc and a threshold given

by the designer is a conceptual retrieval mechanism.

For each solution Soli in the case base, the preselection

process evaluates how much the Solution Concept

(Concept(Soli)) linked to the solution is compatible

with the set of concepts Cc. The compatibility, denoted

by Comp(Soli, Cc), is given by Eq. (6):

Comp(Soli, Cc) ¼ mCc
(Concept(Soli)): (6)

Therefore, each solution in the case base having a

compatibility greater than or equal to a threshold a (0

� a � 1) given by the designer is preselected for the

next step of retrieval and added to the setPRE conjointly

with its compatibility measure [Eq. (7)].

PRE ¼ {(Soli, Comp(Soli, Cc))}=Comp(Soli, Cc) � a: (7)

Then, from an n-tuple of values corresponding to a

preselected solution of the set PRE, the retrieval mecha-

nism has to

† evaluate the compatibility of the solution with regard

to each flexible constraint (local compatibility);

† aggregate the local compatibilities in order to obtain

the compatibility of the whole solution with regard

to all flexible constraints (global compatibility); and

† select compatible solutions.

b. Compatibility with regard to a flexible discrete con-

straint: Let ~si be a flexible discrete constraint (on n

variables of the set Vsi
), where the preferences of the

designer have been integrated by defining the member-

ship function msi
. Let a solution Solk be represented by

a set of q values denoted by Vvalue
Solk

corresponding to the

set of variables VSolk . The compatibility of Solk with re-

gard to the constraint ~si is given by Eq. (8). If all the

variables involved in the constraint are defined in the

solution and their values belong to the authorized n-tu-

ples Xa, then the compatibility is maximum. If the vari-

able values do not belong to Xa, the compatibility is

given by the designer’s preference. If at least one vari-

able involved in the constraint is not used in the solu-

tion, then the compatibility is equal to 0.

Comp(Solk , ~si)

¼

1 if Vsi
VSolk andV

value
Solk

Xa,

msi
(Vvalue

Solk
) if Vsi

VSolk andV
value
Solk

#= Xa,

0 Otherwise:

8

>

<

>

:

(8)

c. Compatibility of a solution with regard to the whole set

of flexible constraints: The local compatibilities of the

solution Solk with regard to a set ~s of M flexible con-

straints (~s ¼ f~s1, ~s2, . . . , ~sMg) have to be aggregated
in order to provide a global compatibility measure. This

aggregation can be performed, for instance, by means

of a Minkowski function (Bergmann, 2002). Then,

the global compatibility of the solution Solk with regard

to the set ~s is given by Eq. (9) (Coudert, Vareilles, Al-

danondo, et al., 2011).

Comp(Solk , ~s) ¼
X

m

i¼1

(1=m)� (Comp(Solk , ~si))
b

� �1=b

: (9)

The parameter b permits the designer to tune the aggregation

mechanism (b ¼ 1: weighted average, b ! 1: maximum).

Fig. 10. The compatible cases retrieval process.

Then, considering the compatibility measure of each prese-

lected solution with regard to the entire set of constraints, the

selection of compatible solutions can be made by the designer

to decide howmany solutions to develop and the solution def-

inition processes (one process for each solution to be devel-

oped) can begin. This retrieval process fulfills the require-

ment R.2 (Section 2.4).

4.2.3. Solution definition process

From the set of approximately compatible solutions com-

ing from the compatible cases retrieval process, one or

many solutions corresponding to the new requirements have

to be developed. The retrieved solutions can rarely be directly

used as suitable solutions. They usually require adaptations to

be applied to new requirements. The adaptation process may

be as simple as the substitution of a component. This is ex-

pressed by changing the value of the variable corresponding

to the component or the feature. The adaptation can be as

complex as the complete modification of the solution struc-

ture. The adaptation can occur by inclusion, removal, substi-

tution, or transformation of the variable values (Policastro

et al., 2008). Within a routine design context, the designer

will make a copy of fully compatible solutions. In an innova-

tive design context, the designer will make copies of several

elements or ideas and will totally change other ones. For the

latter, the proposed RCBR process is helpful because the de-

signer knows which elements are the prior compatible solu-

tions and which elements are the obsolete components to re-

place within the new solution.

a. Description of the solution definition process:The solu-

tion definition process is represented in Figure 11 for

the development of one solution Solnew. An empty solu-

tion is created. Then, from the set of retrieved solutions

and their compatibility measures given by the compati-

ble cases retrieval process, the designer selects one so-

lution Solr to reuse. Three scenarios are presented.

Scenario 1: The solution has to be developed from

scratch because the retrieved solutions are not consid-

ered suitable. The designer chooses a SoC in the ontol-

ogy and develops the new solution. The knowledge em-

bedded in the concept SoC is used as a guideline. This

task is finished when the designer has given a value to

each variable. However, two possibilities remain:

† If the designer chooses to decompose the solution

into n subsystems (n� 2) because of the complexity,

the entire RCBR process is carried out RCBR times

for the development of each subsystem solution at

the lower level. The designer has to provide the sub-

system requirements dedicated to each subsystem.

When developed, the subsystem solutions are inte-

grated to finalize the system solution by giving val-

ues to the variables.

† If the designer can develop the solution without de-

composition, the process is finished.

Scenario 2: One solution Solr is selected for re-

use. Then, Solr is copied into Solnew. Thus, the

solution Solnew is confronted with the set of crisp re-

quirements constraints s. If each requirement con-

straint of s is satisfied by Solnew, that means that

no adaptation effort is needed and the development

of the solution Solnew is finished.

Scenario 3: As in scenario 2, Solr is copied into

Solnew, but the solution Solnew does not satisfy the

Fig. 11. The solution definition process.

requirements constraints. Thus, the solution Solnew
is adapted in accordance with the new requirements.

If the solution Solnew is composed of subsystems,

the designer has to adapt the subsystem require-

ments and transmit them to the lower level RCBR

process to eventually reuse the subsystem solutions.

When each subsystem has been developed within its

own RCBR process, the subsystem solutions have to

be integrated. If the solution Solnew is not composed

of subsystems, then the development is finished

after the adaptation task.

b. Description of the solution copy and adaptation:When

a solution Solr is copied into an empty solution Solnew,

the following information is transferred:

† the solution concept of Solr is copied and linked to

Solnew,

† all solution variables (and their domain) of Solr are

copied into Solnew (added solution variables, added

requirements variables, and conceptual solution

variables),

† all solution constraints are copied (added solution

constraints, added requirements constraints, and

conceptual solution constraints).

† the change of the concept linked to the solution

Solnew by a close concept within the ontology (thus,

conceptual variables and constraints can be added or

removed), and

† the addition of variables and values.

4.2.4. Verification, validation, and capitalization process

The final process concerns the verification/validation of

the entire set of solutions that have been developed with the

goal of fulfilling the requirements. For each solution, it is

necessary to evaluate the n-tuple of values against the require-

ments constraints. Each constraint must be satisfied to vali-

date the solution. If some values violate a constraint, they

have to be changed. A solution is validated when it is certain

that the values satisfy the entire set of requirements con-

straints and, furthermore, the solution constraints (require-

ments constraintþ added solution constraints). When a solu-

tion is validated, it can be capitalized with its case in the case

base for future reuse. Note that a nonvalidated solution can

also be capitalized. In another context, such a solution could

be validated.

The proposed solution definition process fulfills require-

ment R.3. There are several important notes:

† Even if the proposed RCBR process is presented as se-

quential activities, each time it is possible to backtrack

and modify information. Particularly during the solution

definition process, new requirements can be added by

the designer, or some exceptions can be required regard-

ing a particular constraint that is impossible to satisfy. In

such cases, the activities are stopped, the requirements

can be modified (demand for derogation, for instance),

newly retrieved solutions can be obtained from the

case base, and the solution definition process can restart

within its new context. Such a function is not described

in this paper.

† If a suitable concept (RC or SoC) is not found in the on-

tology, it can be added by the designer. However, it is

important to note that a KM process is then required in

order to verify and validate the new concept. A number

of questions have to be treated. Is it well founded? Is it

placed at the right place in the ontology? Are the models

within the concepts complete? However, this KM activ-

ity is not described in our approach.

5. ILLUSTRATIVE EXAMPLE, TESTS, AND

DISCUSSION

First, an academic example of a system design following the

RCBR process is described to highlight and validate the pro-

posed approach. The representation highlights information

and knowledge. Second, the ATLAS software used in order

to implement the propositions is briefly presented. Third,

the experiments performed to test the compatible cases re-

trieval process are presented, and fourth, a discussion about

the results and the contribution is provided.

5.1. Description of the example

a. Case base content: To simplify, only three cases of the

case base are represented for this example. Furthermore,

only the solutions are represented: Sol1, Sol2, and Sol3
(Table 1). The concepts are from the ontology of Fig-

ure 2 (Section 3.1).

b. Customer needs: The needs are expressed as “The ail-

eron length should be equal to 1000 mm and its weight

should be light.”

c. Requirements: From the customer’s need, the designer

chooses the concept Aileron in the ontology of Figure 2.

The knowledge embedded into the concept Aileron is

represented in Table 2.

The choice of the requirements concept Aileron

leads the designer to make copies of the conceptual

variables L, W, and Wg and the constraints V1 and V2

(copies are named respectively, l,w, andwg for the vari-

ables and s1 and s2 for the constraints). The need for

“light weight” leads to the addition of the variable mt

and to the definition of the constraint s3. The need

for the length (l ¼ 1000) leads to the addition of the

constraint s4. The four constraints are expressed by

means of the allowed n-tuples of values Xa1, Xa2,

Xa3, and Xa4 (Table 3).

d. Flexible requirements for retrieval: The flexible re-

quirements are represented in Figure 12. The constraints

~s2 and ~s4 are defined such that ms2
(Ti)¼ 1, 8Ti [Xa2;

ms2
(Ti) ¼ 0, Otherwise and ms4

(Ti) ¼ 1 8Ti [Xa4;

ms4
(Ti) ¼ 0, Otherwise.

e. Compatible cases retrieval process/preselection of

compatible solutions: The compatibilities of the solu-

tions with regard to the set of compatible concepts are

represented in Table 4.

Let a be the threshold such that a¼ 0.3 given by the

designer. Therefore, Sol3 is not preselected because its

concept (Tubular spar) is totally different than the re-

quirements concept (Aileron).

f. Compatible cases retrieval process/selection of compa-

tible solutions: Sol1 and Sol2 are taken into considera-

tion and are evaluated against the flexible constraints

s1, s2, s3, and s4.

Compatibilities of Sol1 with regard to the constraints. The

variable w involved in the constraint s1 is missing within

Sol1 (VSol1 ¼ f1, wg, mtg; Vs1
¼ f1, wg; Vs1

å VSol1).

Then, following Eq. (8), the compatibility is (Comp (Sol1,

~s1) ¼ 0). The constraint involves only the variable w, which

is missing in the solution Sol1: Comp (Sol1, ~s2)¼ 0. The con-

straint s3 involves one variable mt, which belongs to the so-

lution Sol1. Its value is “metal,” and the compatibility is

Comp (Sol1, ~s3) ¼ ms3
(metal) ¼ 0.2. The constraint s4 in-

volves one variable l, which is defined within the solution

Sol1. Its value is equal to 1500, and the compatibility is

Comp (Sol1, ~s4) ¼ ms4
(1500) ¼ 0.

Aggregation: The global compatibility of the solution Sol1
with regard to the entire set of flexible constraints ~s is defined

by Eq. (10) with b ¼ 2 and M ¼ 4:

Comp(Sol1, ~s) ¼
X

4

i¼0

(1=4)� (Comp(Sol1, ~si))
2

 !1=2

¼
ffi

0:25� (0þ 0þ 0:22 þ 0)
p

¼ 0:1: (10)

Compatibilities of Sol2 with regard to the constraints. Vari-

ables l and w involved in the constraint s1 are defined within

the solution Sol2. The compatibility is (Comp (Sol2, ~s1) ¼

ms1
(1400, 75) ¼ 0.8). Variable w takes the value 75 in

Sol2. The compatibility with regard to s2 is Comp (Sol2,

~s2) ¼ ms2
(75) ¼ 1. The variable mt takes the value “Metal”

in Sol2. The compatibility with regard to s3 is Comp (Sol2,

~s3) ¼ ms3
(Metal) ¼ 0.2. Variable l takes the value 1400 in

Sol2. The compatibility with regard to s4 is Comp (Sol2,

~s4) ¼ ms4
(1400) ¼ 0.

Aggregation: The global compatibility of the solution Sol2
with regard to the entire set of flexible constraints ~s (with

b ¼ 2) is defined by the Eq. (11):

Comp(Sol2, ~s) ¼
X

4

i¼0

(1=4)� (comp(Sol2, ~si))
2

 !1=2

¼
ffi

0:25� (0:82 þ 12 þ 0:22 þ 02)
p

¼ 0:648: (11)

Table 1. Description of three solutions

Solution Concept Single Slotted Flap

Variables (VSol1)
Length
(l)

Weight
(wg)

Material
(mt) x y

Sol1 values (V
value
Sol1

) 1500 100 Metal 60 2.36

Solution Concept Differential Aileron

Variables (VSol2)

Length

(l)

Width

(w)

Weight

(wg)

Material

(mt) a

Sol2 values (V
value
Sol2

) 1400 75 150 Metal p

Solution Concept Tubular Spar

Variables (VSol3)

Length

(l)

Width

(w)

Weight

(wg)

Material

(mt)

Sol3 values (V
value
Sol3

) 15,000 150 3000 Metal

Table 3. Requirements for the system to develop

Requirements Concept: RC ¼ Aileron

Conceptual Variables and Domains

Length (l) dl ¼ {900, 1000, 1100, 1200, 1300, 1400, 1500}

Width (w) dw ¼ {45, 50, 55, 60, 65, 70, 75}

Weight (wg) dwg = {25, 50, 75, 100, 125, 150, 175, 200, 250,

300, 350, 400, 450, 500, 550}

Conceptual Constraints

s1: l = 20× w ! Xa1

= {(900, 45), (1000, 50), (1100, 55), (1200, 60),

(1300, 65), (1400, 70), (1500, 75)}

s2: w [[30.00, 100.00] ! Xa2 ¼ {45, 50, 55, 60, 65,

70, 75}

Added Variables and Domains

Material (mt) dmt ¼ {Carbon Fiber, Metal}

Added Requirements Constraints

s3: mt [{Carbon Fiber} ¼ Xa3
s4: l [{1000.00} ¼ Xa4

Table 2. Conceptual models of aileron

Conceptual Models Within Aileron Concepta

Model of

conceptual

variables

yaileron ¼ {Length (L), width (W), weight (Wg)}

Models of

domains

Daileron = {{900, 1000, 1100, 1200, 1300, 1400, 1500},

{45, 50, 55, 60, 65, 70, 75},

{25, 50, 75, 100, 125, 150, 175, 200, 250,

300, 350, 400, 450, 500}}

Models of

conceptual

constraints

Saileron ¼ {V1: L ¼ 20×W},

V2: W [{25, 50, 75, 100, 125}

aFrom the antology of Figure 2.

The results of the compatible cases retrieval process are

represented in Table 5.

Analyzing these results, one can observe that the solution

Sol1 is not adapted because it has a global compatibility equal

to 0.1. Furthermore, the concept Single slotted flap is very far

from the RC Aileron (similarity ¼ 0.33). The solution Sol2 is

the nearest to the requirements with a global compatibility

equal to 0.648 and was obtained by taking into account the

designer preferences. Furthermore, the concept Differential

Aileron is near to the required concept Aileron (similarity ¼

0.8). Therefore, Sol2 is chosen by the designer for adaptation.

This adaptation has to be achieved by eliminating the incom-

patibilities with regard to the constraints s1, s3, and s4.

g. Adaptation: The solution Solnew is created from the solu-

tion Sol2 (Table 6). The values of the pair (i.e., couple) of

solution variables (l, w) are reduced to the n-tuple (1000,

50) and the couple (wg, mt) is transformed into (60, Car-

bon Fiber). The variable a is specialized to the concept

Differential Aileron; thus, it is removed from the solution

Solnew. Clearly, in this academic example, thework of the

designer to provide a new solution by adapting the prior

one is not highlighted. However, her/his work can be fa-

cilitated through the benefit of EF from prior designs of-

fered by the proposed method.

h. Validation, verification and capitalization: Each con-

straint of the requirements has to be checked with the

Fig. 12. Flexible requirements.

Table 5. Results of the compatible cases retrieval process

s1 s2 s3 s4

Global Compatibility
With Regard to
Constraints

Compatibility
With Regard to
Requirements

Concept

Sol1 0 0 0.2 0 0.1 0.33

Sol2 0.8 1 0.2 0 0.648 0.8

Table 4. Compatibilities of the solutions with regards to Cc

Solution Solution Concept Compatibility With Regard to Cc

Sol1 Single slotted

flap

Comp(Sol1, Cc) ¼

mCc(Single slotted flap) ¼ 0.33

Sol2 Differential

aileron

Comp(Sol2, Cc) ¼

mCc(Differential Aileron) ¼ 0.8

Sol3 Tubular spar Comp(Sol3, Cc) ¼ mCc(Tubular spar) ¼ 0

variable values within the solution. One can observe

that each constraint is satisfied by the possible values,

and then the solution Solnew is validated and capitalized

into the case base, encapsulated within a new case with

its requirements. This solution will be reused in future

design processes.

5.2. Implementation within the ATLAS software

As presented in the Introduction, one of the outcomes of the

ATLAS project was the prototype of a software application.

A web-based application (ATLAS software) has been devel-

oped using the Ruby-On-Rails Framework (see a screen shot

in Fig. 13). It permitted researchers to test and validate the pro-

posed process. Bymeans of this software, it is possible to carry

out the RCBR process for developing a system of systems.

Each system can be composed of many solutions. The software

allows a user to define requirements and to retrieve compatible

solutions in the case base by integrating the designer prefer-

ences. The semantic similarity of Wu and Palmer (1994) has

also been implemented. Compatible solutions are identified,

and a compatibility degree is evaluated using the proposed ap-

proach described in Section 4.2. Then a solution can be reused

and adapted to the new requirements (simple copy or copy plus

modifications). However, in the current version of the proto-

type, the requirements constraints are unary constraints (they

involve only one variable; Gelle et al., 2000). This software

prototype has been tested by an industrial partner of the AT-

LAS project in order to validate the approach.

5.3. Test of the compatible cases retrieval process

In order to test the compatible cases retrieval algorithm used

in the proposed approach, a random generator has been devel-

oped in Ruby language. For each experiment, a random ontol-

ogy has been generated. The parameters are the ontology’s

depth and the number of descendents of each concept (mini-

mum and maximum). For each concept, some variables and

constraints are randomly generated and others are inherited

from its ancestors. A case base is also generated: each system

is composed of two solutions, and the number of systems is

103, 104, or 105. New requirements are also generated ran-

domly: the RC, the added requirements variables, and the

added requirements constraints. The designer’s preferences

(i.e., the preferred n-tuples) are also randomly added to

each requirements constraint. For each test, 10 experiments

have been run, and the results show the values corresponding

to the minimum/mean/maximum of the indicators. The com-

Table 6. Result of the adaptation of Sol2 into Solnew

Solution Concept Aileron

Variables (VSolnew)
Length
(l)

Width
(w)

Weight
(wg)

Material
(mt)

Solnew values (Vvalue
Solnew

) 1000 50 60 Carbon fiber

Fig. 13. ATLAS Software.

patible cases retrieval process parameters are tuned as follow:

the threshold a is equal to 0.5 and b is equal to 2. The results

of the different experiments are synthesized in Table 7.

These results show that the algorithm is able to provide re-

trieved solutions to the designer even for large case bases (105

cases). The preselection of compatible solutions using the

threshold of 0.5 permits retrieved solutions with a compatibil-

ity �0.47. The computing time of solutions compatibility

measures is reduced because only the preselected solutions

are taken into account. In order to verify this point, a set of

10 experiments has been run with 7� 104 concepts (mean

value), 2� 105 solutions, and a ¼ 0.0. The mean time to

perform the retrieval activity on the whole case base (2 �
105 solutions) is 33 times higher than for the worst experi-

ments obtained in Table 7 (right column). The mean compat-

ibility is equal to 0.36.

5.4. Discussion

The requirements of the example described in the Section 5.1

was to be simple and easy to understand. Its role is mainly to

highlight the ideas developed in the article. Furthermore, the

experiments that have been carried out and are synthesized in

Section 5.3 allow evaluation of the performances of the com-

patible cases retrieval process. They show that the algorithm

developed for the retrieval can be used in a real context where

the designer can retrieve frequent solutions from the case

base. The use of the double stage retrieval (a conceptual simi-

larity-based selection followed by a deeper comparison of a

reduced number of cases) allows limiting of the retrieval

time. Based on this example and on the propositions devel-

oped in Sections 3 and 4, the main contributions of this paper

are synthesized below. Some limitations are also discussed.

The three requirements defined in Section 2.4 are fulfilled

simultaneously by the proposed approach for system engi-

neering.

1. It is fully compatible with the system engineering stan-

dards. A company that wishes to implement a system

engineering standard following ISO-15288 or INCOSE

recommendations giving guidelines to the development

processes of systems can carry out the RCBR process

because it is suitable to system development.

2. Simultaneously, the proposed approach permits the de-

signer to express her/his preferences directly by defin-

ing flexible constraints. Thus, the comparison of the

problem (i.e., the requirements modeled by a set of flex-

ible constraints) and a solution of the case base is done

by calculating a global compatibility measure that is not

based on the aggregation of similarities between attri-

butes values. Furthermore, it is not necessary for the de-

signer to define the preferences on each variable value.

3. Finally, the CBR approach is guided by an ontology of

concepts all along the case-based design process. The

concepts contain knowledge and represent at an abstract

level the objects that can be developed. This knowledge

is expressed by means of variables, domains, and con-

straints. First, the requirements definition can be done at

a conceptual level by choosing a concept in the ontol-

ogy. The knowledge embedded into this concept is

suitable to aid the designer defining the requirements.

Second, the retrieval is a double stage activity that al-

lows acceleration of the retrieval activity: a first step

permits a designer to quickly select solutions with a

concept that is sufficiently similar to the RC (and/or

preferred by the designer). The second step permits

the designer to calculate the compatibility of selected

solutions. In the third step, during the solution defini-

tion process, the concept associated to the solution to

develop can help the designer defining the characteris-

tics of the system that fulfills the requirements.

Numeric requirements constraints intentionally expressed

(e.g., s: 2� ln(v1) þ 3�v2 ¼ 50) have to be discretized and

extensionally expressed, defining the set of allowed n-tuples

of values. Then, the designer can express his preferences on

each allowed n-tuple. This is not yet implemented in our ap-

proach. When a requirement constraint involves a lot of vari-

ables, the definition of preferred n-tuples can be difficult for

Table 7. Experimental results

Ontology Depth 6 15

No. of Descendents/Concept 0/4/8 0/1.5/3

No. of concepts 580/9000/2×104 103/12×103/2×104 2000/104/2×104 3×104/76×103/105 104/4×104/105 6000/6×104/105

No. solutions 2×103 2×104 2×105 2×103 2×104 2×105

No. of solution variables 3/16/30 2/17/32 1/16/33 6/34/56 4/33/60 1/34/61

No. of solution constraints 2/9/14 1/9/14 1/9/14 6/18/23 3/18/23 2/18/23

No. of requirements

variables 7/13/18 11/15/20 12/16/20 22/32/40 18/28/35 23/32/38

No. of requirements

constraints 4/8/10 6/8/10 6/8/10 12/17/19 13/16/19 13/16/18

No. of preselected solutions 13/88/377 118/540/2100 1250/4000/17500 1/20/64 67/500/2000 1000/4000/15×103

Compatibility 0.47/0.73/1.0 0.53/0.73/1.0 0.47/0.75/1.0 0.62/0.78/1.0 0.6/0.78/1.0 0.55/0.75/1.0

Retrieval time (s) 0.009/0.02/0.04 0.1/0.2/0.4 0.9/2.4/12 0.02/0.04/0.15 0.2/0.45/1.3 2/7/15

the designer because the expression of the preferences in-

volves a lot of combinations. The adaptation of solutions is

a difficult step of CBR approaches. There are no aiding tools

proposed in our approach to help designers to adapt solutions.

Only the tacit knowledge of the designer is used.

6. CONCLUSION

In this article, using existing academic and industrial stan-

dards and existing standard CBR methodologies, an inte-

grated CBR process for system design has been proposed.

This process is fully compatible with system engineering re-

quirements. For each step of this process, methods have been

proposed to take into account designer preferences at the ear-

liest phases of a design process. Furthermore, to aid designers

and to formalize knowledge for design, an ontology has been

defined that formalizes guidelines suitable to the proposed

RCBR process. For the requirements definition, the retrieval

of compatible cases, and the solutions definition, the knowl-

edge embedded in the concepts of the ontology is exploited,

leading to improve standardization. This facilitates the future

reuse of the acquired knowledge for system design as well as

the definition of the corresponding information. The retrieval

mechanism is a double stage and preference-based process.

The requirements concept corresponding to requirements at

a conceptual level is used in order to identify solutions within

the case base. Then, requirements constraints are used in or-

der to define compatible cases with a compatibility measure.

Preferences of the designer are used at each stage. They per-

mit to the designer to give flexibility to the retrieval process,

and moreover, they replace similarity measures generally

used in CBR tools and sometimes difficult to obtain from ex-

perts. At the first stage, a set of preferred concepts is given by

the designer with a preference degree. At the second stage,

preferences are expressed for the requirements constraints.

The designer expresses how she/he prefers to use some n-

tuples of values, by defining a preference degree that is ex-

ploited during the retrieval step. Our process is compatible

with system engineering requirements and processes where

systems of systems have to be recursively developed.

The ATLAS software permits designers to show the feasi-

bility of the approach and has been evaluated by industrial

partners of the ATLAS project. The experiments have been

carried out using a testbed that automatically generates an on-

tology and cases have shown that the double stage compatible

cases retrieval process is efficient even for large case bases.

Extensions of this work concern first the integration of the

proposed RCBR process into the project management pro-

cess. The RCBR process may be integrated into project plan-

ning to manage system design projects and reuse prior plan-

ning information (e.g., resources, tasks, and durations).

Initial models have been proposed be Abeille et al. (2010)

and Coudert, Vareilles, Geneste, et al. (2011). Second, the ap-

proach may be improved in order to better take into account

numeric constraints without discretization and to propose aid-

ing tools to the designer for expressing its preferences when

requirements constraints involve a lot of variables. Third,

constraint satisfaction problem filtering tools may be used

in order to reduce the solution space very early. We have pro-

posed first methods for coupling such CBR and constraint

satisfaction problem in Vareilles et al. (2012).

REFERENCES

Aamodt, A., & Plaza, E. (1994). Case-based reasoning: foundational issues,
methodological variations, and system approaches. AI Communications
7(1), 39–52.

Abeille, J., Coudert, T., Vareilles, É., Geneste, L., Aldanondo, M., & Roux, T.
(2010). Formalization of an integrated system/project design framework:
first models and processes. In Complex Systems and Management (Aigu-
ier, M., Bretaudeau, F., & Krob, D., Eds.), pp. 207–217. Berlin: Springer.

Althoff, K.-D., & Weber, R. (2005). Knowledge management in case-based
reasoning. Knowledge Engineering Review 20(3), 305–310.

Altshuller, G. (1996). And Suddenly the Inventor Appeared: Triz, the Theory of
Inventive Problem Solving. Worcester, MA: Technical Innovation Center.

Armaghan, N., & Renaud, J. (2012). An application of multi-criteria decision
aids models for case-based reasoning. Information Sciences 210, 55–66.

Avramenko, Y., & Kraslawski, A. (2006). Similarity concept for case-based
design in process engineering. Computers & Chemical Engineering

30(3), 548–557.
Batet, M., Sánchez, D., & Valls, A. (2011). An ontology-based measure to

compute semantic similarity in biomedicine. Journal of Biomedical In-
formatics 44(1), 118–125.

Benferhat, S., Dubois, D., Kaci, S., & Prade, H. (2006). Bipolar possibility
theory in preference modeling: representation, fusion and optimal solu-
tions. Information Fusion 7(1), 135–150.

Bergmann, R. (2002). Experience Management: Foundations, Development

Methodology, and Internet-Based Applications. Berlin: Springer.
Brandt, S.C., Morbach, J., Miatidis, M., Theißen, M., Jarke, M., & Mar-

quardt, W. (2008). An ontology-based approach to knowledge manage-
ment in design processes. Computers & Chemical Engineering 32(1–2),
320–342.

Cao, D., Li, Z., & Ramani, K. (2011). Ontology-based customer preference
modeling for concept generation. Advanced Engineering Informatics

25(2), 162–176.
Chandrasegaran, S.K., Ramani, K., Sriram, R.D., Horvth, I., Bernard, A.,

Harik, R.F., & Gao, W. (2013). The evolution, challenges, and future
of knowledge representation in product design systems. Computer-Aided
Design 45(2), 204–228.

Chang, X., Sahin, A., & Terpenny, J. (2008). An ontology-based support for
product conceptual design. Robotics and Computer-Integrated Manufac-

turing 24(6), 755–762.
Chen, X., Gao, S., Guo, S., & Bai, J. (2012). A flexible assembly retrieval

approach for model reuse. Computer-Aided Design 44(6), 554–574.
Chen, Y.-J., Chen, Y.-M., Chu, H.-C., & Kao, H.-Y. (2008). On technology for

functional requirement-based reference design retrieval in engineering
knowledge management. Decision Support Systems 44(4), 798–816.

Chenouard, R., Granvilliers, L., & Sebastian, P. (2009). Search heuristics for
constraint-aided embodiment design. Artificial Intelligence for Engineer-
ing Design, Analysis and Manufacturing 23, 175–195.

Cordi, V., Lombardi, P., Martelli, M., & Mascardi, V. (2005). An ontology-
based similarity between sets of concepts. In Proc. Workshop dagli Og-

getti agli Agenti (WOA) (Corradini, F., Paoli, F.D., Merelli, E., & Omi-
cini, A., Eds.), pp. 16–21. Bologna: Pitagora Editrice.

Cordier, A., Mascret, B., &Mille, A. (2009). Extending case-based reasoning
with traces. InGrand Challenges for Reasoning from Experiences, work-
shop at IJCAI’09.

Cortes-Robles, G., Negny, S., & Le-Lann, J.M. (2009). Case-based reasoning
and TRIZ: a coupling for innovative conception in chemical engineering.
Chemical Engineering and Processing: Process Intensification 48(1),
239–249.

Coudert, T., Vareilles, É., Aldanondo, M., Geneste, L., & Abeille, J. (2011).
Synchronization of system design and project planning: integrated model
and rules. 5th IEEE Int. Conf. Software, Knowledge, Information, Indus-

trial Management and Applications (SKIMA’ 2011), pp. 1–6.
Coudert, T., Vareilles, É., Geneste, L., Aldanondo, M., & Abeille, J. (2011).

Proposal for an integrated case based project planning. In Complex Sys-

tems Design and Management (Hammami, O., Krob, D., & Voirin, J.-L.,
Eds.), pp. 133–144. Berlin: Springer.

Dalkir, K. (2005). Knowledge Management in Theory and Practice. Amster-
dam: Elsevier/Butterworth Heinemann.

Darlington, M.J., & Culley, S.J. (2008). Investigating ontology development
for engineering design support. Advanced Engineering Informatics

22(1), 112–134.
Dieter, G. (2000). Engineering Design: A Materials and Processing Ap-

proach. New York: McGraw–Hill.
Domshlak, C., Hüllermeier, E., Kaci, S., & Prade, H. (2011). Preferences in

AI: an overview. Artificial Intelligence 175(7–8), 1037–1052.
Dubois, D., Esteva, F., Garcia, P., Godo, L., de Mantaras, R.L., & Prade, H.

(1997). Fuzzy modelling in case-based reasoning and decision. Proc.
ICCBR-97, Case-Based Reasoning Research and Development (Leake,
D.B., & Plaza, E., Eds.), pp. 599–610. New York: Springer–Verlag.

Dubois, D., Fargier, H., & Prade, H. (1996). Possibility theory in constraint
satisfaction problems: handling priority, preference and uncertainty. Ap-
plied Intelligence 6(4), 287–309.

Dubois, D., Prade, H., Esteva, F., Garcia, P., Godo, L., & Lopez de Mantaras,
R. (1998). Fuzzy set modelling in case-based reasoning. International
Journal of Intelligent Systems 13(4), 345–373.

Faure, A., & Bisson, G. (1999). Modeling the experience feedback loop to
improve knowledge base reuse in industrial environment. In 12th Work-

shop on Knowledge Acquisition, Modeling and Management, KAW 99.
Banff, Canada.

Finnie, G.R., & Sun, Z. (2003). R5 model for case-based reasoning. Knowl-
edge-Based Systems 16(1), 59–65.

Foguem, B.K., Coudert, T., Béler, C., & Geneste, L. (2008). Knowledge for-
malization in experience feedback processes: an ontology-based ap-
proach. Computers in Industry 59(7), 694–710.

Gao, C., Huang, K., Chen, H., & Wang, W. (2006). Case-based reasoning
technology based on TRIZ and generalized location pattern. Journal of
TRIZ in Engineering Design 2, 40–58.

Gelle, E., Faltings, B., Clément, D.E., & Smith, I.F.C. (2000). Constraint
satisfaction methods for applications in engineering. Engineering With

Computers (London) 16(2), 81–95.
Gero, J.S. (1990). Design prototypes: a knowledge representation schema for

design. AI Magazine 11(4), 26–36.
Girard, P., & Doumeingts, G. (2004). Modelling the engineering design sys-

tem to improve performance. Computers and Industrial Engineering

46(1), 43–67.
Goel, A.K., & Craw, S. (2006). Design, innovation and case-based reasoning.

Knowledge Engineering Review 20(3), 271–276.
Gomez De Silva Garza, A., & Maher, M. (1996). Design by interactive ex-

ploration using memory-based techniques. Knowledge-Based Systems

9(3), 151–161.
Gu, D.-X., Liang, C.-Y., Bichindaritz, I., Zuo, C.-R., & Wang, J. (2012). A

case-based knowledge system for safety evaluation decision making of
thermal power plants. Knowledge-Based Systems 26, 185–195.

Guo, Y., Hu, J., & Hong Peng, Y. (2012). ACBR system for injection mould
design based on ontology: a case study. Computer-Aided Design 44(6),
496–508.

Haskins, C. (2011). Systems Engineering Handbook: A Guide for Systems

Life Cycle Processes and Activities. San Diego, CA: INCOSE.
Huang, C.-C., & Kusiak, A. (1998). Modularity in design of products and

systems. IEEE Transactions on Systems, Man, and Cybernetics, Part A

28(1), 66–77.
Huysentruyt, J., & Chen, D. (2010). Contribution to the development of a

general theory of design. 8th Int. Conf. Modeling and Simulation, MO-

SIM 2010, Hammamet, Tunisia.
ISO. (2008). ISO/IEC 15288:2008. Systems and Software Engineering Sys-

tem Life Cycle Processes. Geneva: Author.
Jabrouni, H., Foguem, B.K., Geneste, L., & Vaysse, C. (2011). Continuous

improvement through knowledge-guided analysis in experience feed-
back. Engineering Applications of Artificial Intelligence 24(8), 1419–
1431.

Jabrouni, H., Kamsu-Foguem, B., & Geneste, L. (2009). Exploitation of
knowledge extracted from industrial feedback processes. Proc. Software,
Knowledge and Information Management and Applications, SKIMA

2009, Fes, Morocco.
Janthong, N., Brissaud, D., & Butdee, S. (2010). Combining axiomatic de-

sign and case-based reasoning in an innovative design methodology of
mechatronics products. CIRP Journal of Manufacturing Science and

Technology 2(4), 226–239.

Junker, U., & Mailharro, D. (2003). Preference programming: advanced
problem solving for configuration. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing 17(1), 13–29.

Kam, C., & Fischer, M. (2004). Capitalizing on early project decision-mak-
ing opportunities to improve facility design, construction, and life-cycle
performance-POP, PM4D, and decision dashboard approaches. Automa-
tion in Construction 13(1), 53–65.

Kim, K.-Y., Manley, D.G., &Yang, H. (2006). Ontology-based assembly de-
sign and information sharing for collaborative product development.
Computer-Aided Design 38(12), 1233–1250.

Kolb, D.A. (1984). Experiential learning: experience as the source of learn-
ing and development. Journal of Organizational Behavior 8, 359–360.

Kolodner, J. (1993). Case-Based Reasoning. San Mateo, CA: Morgan Kauf-
mann.

Lau, A.S.M., Tsui, E., & Lee, W.B. (2009). An ontology-based similarity
measurement for problem-based case reasoning. Expert SystemsWith Ap-

plications 36(3), 6574–6579.
Leake, D., &McSherry, D. (2005). Introduction to the special issue on expla-

nation in case-based reasoning. Artificial Intelligence Review 24(2), 103–
108.

Lee, K., & Luo, C. (2002). Application of case-based reasoning in die-casting
die design. International Journal of Advanced Manufacturing Technol-

ogy 20, 284–295.
Liu, D.-R., & Ke, C.-K. (2007). Knowledge support for problem-solving in a

production process: a hybrid of knowledge discovery and case-based rea-
soning. Expert Systems With Applications 33(1), 147–161.

Liu, H.-W. (2005). New similarity measures between intuitionistic fuzzy sets
and between elements. Mathematical and Computer Modelling 42(12),
61–70.

Macedo, L., & Cardoso, A. (1998). Nested graph-structured representations
for cases. Proc. 4th European Workshop on Advances in Case-Based

Reasoning (EWCBR-98) (Smyth, B., & Cunningham, P. Eds.), LNAI,
Vol. 1488, pp. 1–12. Berlin: Springer.

Maher, M.-L., & Gomez de Silva Garza, A. (1997). Case-based reasoning in
design. IEEE Expert 12(2), 34–41.

Martin, J.N. (2000). Processes for engineering a system: an overview of the
ansi/eia 632 standard and its heritage. Systems Engineering 3(1), 1–26.

Mileman, T., Knight, B., Petridis, M., Cowell, D., & Ewer, J. (2002). Case-
based retrieval of 3-dimensional shapes for the design of metal castings.
Journal of Intelligent Manufacturing 13, 39–45.

Mok, C., Hua, M., & Wong, S. (2008). A hybrid case-based reasoning CAD
system for injection mould design. International Journal of Production
Research 46(14), 3783–3800.

Mondragon, C.C., Mondragon, A.C., Miller, R., & Mondragon, E C. (2009).
Managing technology for highly complex critical modular systems: the
case of automotive by-wire systems. International Journal of Production
Economics 118(2), 473–485.

Montanari, U. (1974). Networks of constraints: fundamental properties and
application to picture processing. Information Science 7, 95–132.

Nanda, J., Thevenot, H.J., Simpson, T.W., Stone, R.B., Bohm, M., & Shoo-
ter, S.B. (2007). Product family design knowledge representation, aggre-
gation, reuse, and analysis. Artificial Intelligence for Engineering De-

sign, Analysis and Manufacturing 21(2), 173–192.
Negny, S., & Le-Lann, J. (2008). Case-based reasoning for chemical engi-

neering design. Chemical Engineering Research and Design 86(6),
648–658.

Negny, S., Riesco, H., & Lann, J.-M.L. (2010). Effective retrieval and new
indexing method for case based reasoning: application in chemical pro-
cess design. Engineering Applications of Artificial Intelligence 23(6),
880–894.

Pahl, G., & Beitz, W. (1984). Engineering Design: A Systematic Approach.
Berlin: Springer.

Policastro, C.A., de Carvalho, A.C.P.L.F., & Delbem, A.C.B. (2006). Auto-
matic knowledge learning and case adaptation with a hybrid committee
approach. Journal of Applied Logic 4(1), 26–38.

Policastro, C.A., de Carvalho, A.C.P.L.F., Delbem, A.C.B. (2008). A hybrid
case adaptation approach for case-based reasoning. Applied Intelligence

28(2), 101–119.
Qin, X., & Regli, W. (2003). A study in applying case-based reasoning to en-

gineering design: mechanical bearing design. Artificial Intelligence for

Engineering Design, Analysis and Manufacturing 17(3), 235–252.
Rakoto, H., Hermosillo-Worley, J., & Ruet, M. (2002). Integration of expe-

rience based decision support in industrial processes. IEEE Int. Conf. Sys-

tems, Man and Cybernetics, SMC’02. Hammamet, Tunisia.

Richards, D., & Simoff, S.J. (2001). Design ontology in context—a situated
cognition approach to conceptual modelling. Artificial Intelligence in En-
gineering 15(2), 121–136.

Ruet, M., & Geneste, L. (2002). Search and adaptation in a fuzzy object
oriented case base. Proc. 6th European Conf. Case Based Reasoning,
LNAI, Vol. 2416, pp. 350–364. Berlin: Springer.

Saridakis, K., &Dentsoras, A. (2007). Case-desc: a system for case-based de-
sign with soft computing techniques. Expert Systems With Applications

32(2), 641–657.
Settouti, L.S., Prié, Y., Marty, J.-C., &Mille, A. (2009). A trace-based system

for technology-enhanced learning systems personalisation. Proc. 9th
IEEE Int. Conf. Advance Learning Technologies, pp. 93–97.

Simon, H. (1969). The Sciences of the Artificial. Cambridge,MA:MIT Press.
Stahl, A., & Bergmann, R. (2000). Applying recursive CBR for the customi-

zation of structured products in an electronic shop. Advances in Case-

Based Reasoning (Blanzieri, E., & Portinale, L. Eds.), LNCS, Vol.
1898, pp. 297–308. Berlin: Springer.

Studer, R., Benjamins, V.R., & Fensel, D. (1998). Knowledge engineering:
principles andmethods.Data&KnowledgeEngineering 25(1–2), 161–197.

Suh, N.P. (1990). The Principles of Design. New York: Oxford University
Press.

Sun, Z., Han, J., & Dong, D. (2008). Five perspectives on case based reason-
ing. Advanced Intelligent Computing Theories and Applications: With

Aspects of Artificial Intelligence (Huang, D.-S., Wunsch, D.C., Levine,
D., & Jo, K.-H., Eds.), LNSC, Vol. 5227, pp. 410–419. Berlin: Springer.

Tang, M. (1997). A knowledge-based architecture for intelligent design sup-
port. International Journal of Knowledge Engineering Review 12(4),
387–460.

Thornton, A.C. (1996). The use of constraint-based design knowledge to im-
prove the search for feasible designs. Engineering Applications of Artifi-
cial Intelligence 9(4), 393–402.

Ullman, D. (2003). The Mechanical Design Process. New York: McGraw–
Hill Higher Education.

Uschold, M., & Gruninger, M. (1996). Ontologies: principles, methods and
applications. Knowledge Sharing and Review 11(2), 93–155.

Vareilles, E., Aldanondo, M., de Boisse, A.C., Coudert, T., Gaborit, P., &
Geneste, L. (2012). How to take into account general and contextual
knowledge for interactive aiding design: towards the coupling of csp
and cbr approaches. Engineering Applications of Artificial Intelligence

25(1), 31–47.
Wang, J., Tang, M., & Gabrys, B. (2006). An agent-based system supporting

collaborative product design. Knowledge-Based Intelligent Information

and Engineering Systems (Heidelberg, S.-V.B., Ed.), LNAI, Vol. 4252,
Part II, pp. 670–677. Berlin: Springer.

Wang, W.-J. (1997). New similarity measures on fuzzy sets and on elements.
Fuzzy Sets and Systems 85(3), 305–309.

Weber, R., Aha, D.W., & Becerra-Fernandez, I. (2001). Intelligent lessons
learned systems. Expert System Applications 20(1), 17–34.

Woon, F.L., Knight, B., Petridis, M., & Patel, M.K. (2005). CBE-conveyor: a
case-based reasoning system to assist engineers in designing conveyor
systems. Case-Based Reasoning Research and Development (Muñoz-
Avila, H., & Ricci, F., Eds.), LNCS, Vol. 3620, pp. 640–651. Berlin:
Springer.

Wu, M.-C., Lo, Y.-F., & Hsu, S.-H. (2008). A fuzzy cbr technique for gen-
erating product ideas. Expert Systems With Applications 34(1), 530–540.

Wu, Z., & Palmer, M. (1994). Verb semantics and lexical selection. Proc.
32nd Annual Meeting of the Association for Computational Linguistics,
pp. 133–138, New Mexico State University, Las Cruces.

Xuanyuan, S., Jiang, Z., Li, Y., & Li, Z. (2011). Case reuse based product
fuzzy configuration. Advanced Engineering Informatics 25(2), 193–197.

Yang, C., & Chen, J. (2011). Accelerating preliminary eco-innovation design
for products that integrates case-based reasoning and TRIZmethod. Jour-
nal of Cleaner Production 19, 998–1006.

Zarandi,M.F., Razaee, Z.S., &Karbasian,M. (2011). A fuzzy case based rea-
soning approach to value engineering. Expert Systems With Applications

38(8), 9334–9339.

Juan Camilo Romero Bejarano is a Supply Chain Consul-

tant and Trainer in the aeronautical industry. He is also a PhD

student in industrial systems at the University of Toulouse. He

obtained his MS from the University of Toulouse and his

BS in industrial engineering from the National University

of Colombia. His research interests are focused on problem

solving and knowledge management within the frame of col-

laborative supply chains.

Thierry Coudert is an Assistant Professor in the Ecole

Nationale D’Ingenieurs de Tarbes, National Polytechnic In-

stitute of Toulouse, Laboratoire Génie de Production, Univer-

sity of Toulouse. His research is carried out at the Laboratoire

Génie de Production. His work mainly concerns system engi-

neering, metaheuristics for system engineering, and knowl-

edge acquisition and exploitation by experience feedback

approaches.

Elise Vareilles is an Assistant Professor at the University of

Toulouse. She received a PhD from the National Polytechnic

Institute of Toulouse in 2006. Dr. Vareilles’ research interests

are the development of interactive knowledge based aiding

design tools.

Laurent Geneste is with a Professor in the Ecole Nationale

D’Ingenieurs de Tarbes, National Polytechnic Institute of

Toulouse, University of Toulouse. He received his PhD

from University Paul Sabatier (Toulouse) in 1995 and an ac-

creditation to supervise research in 2002. Dr. Geneste is cur-

rently Head of Cognitive and Decisional Systems in the Pro-

duction Management Laboratory in Tarbes. His current

research interest relates to knowledge engineering and more

specifically to experience feedback and lessons learned for

problem solving in industrial organizations.

Michel Aldanondo is a Professor and Director of the Indus-

trial Engineering Laboratory, Mines-Albi, University of Tou-

louse. Professor Aldanondo teaches design and operation

management courses, mainly at the graduate level. His re-

search is concentrated on the development of interactive

knowledge based design tools. He has directed 11 PhD stu-

dents and more than 50 master’s students. Dr. Aldanondo

has published more than 150 articles in journals and confer-

ence proceedings.

Joël Abeille received his PhD degree from the National Poly-

technic Institute of Toulouse (Toulouse) in 2008. He is cur-

rently an engineer in an R&D company.

