456 research outputs found

    The inter-trial spatial biases of stimuli and goals in saccadic programming

    Get PDF
    Prior studies have shown an ‘alternate antisaccade-goal bias’, in that the saccadic landing points of antisaccades were displaced towards the location of antisaccade goals used in other trials in the same experimental block. Thus the motor response in one trial induced a spatial bias of a motor response in another trial. In this study we investigated whether sensory information, i.e. the location of a visual stimulus, might have a spatial effect on a motor response too. Such an effect might be attractive as for the alternate antisaccade-goal bias or repulsive. For this purpose we used block of trials with either antisaccades, prosaccades or mixed trials in order to study the alternate-trial biases generated by antisaccade goals, antisaccade stimuli, and prosaccade goals. in contrast to the effects of alternate antisaccade goals described in prior studies, alternate antisaccade stimuli generated a significant repulsive bias of about 1.8°: furthermore, if stimulus and motor goal coincide, as with an alternate prosaccade, the repulsive effect of a stimulus prevails, causing a bias of about 0.9°. Taken together with prior results, these findings may reflect averaging of current and alternate trial activity in a salience map, with excitatory activity from the motor response and inhibitory activity from the sensory input.

    Systematic diagonal and vertical errors in antisaccades and memory-guided saccades

    Get PDF
    Studies of memory-guided saccades in monkeys show an upward bias, while studies of antisaccades in humans show a diagonal effect, a deviation of endpoints toward the 45° diagonal. To determine if these two different spatial biases are specific to different types of saccades, we studied prosaccades, antisaccades and memory-guided saccades in humans. The diagonal effect occurred not with prosaccades but with antisaccades and memory-guided saccades with long intervals, consistent with hypotheses that it originates in computations of goal location under conditions of uncertainty. There was a small upward bias for memory-guided saccades but not prosaccades or antisaccades. Thus this bias is not a general effect of target uncertainty but a property specific to memory-guided saccades

    Rapid Adaptation of Visual Search in Simulated Hemianopia

    Get PDF
    Patients with homonymous hemianopia have altered visual search patterns, but it is unclear how rapidly this develops and whether it reflects a strategic adaptation to altered perception or plastic changes to tissue damage. To study the temporal dynamics of adaptation alone, we used a gaze-contingent display to simulate left or right hemianopia in 10 healthy individuals as they performed 25 visual search trials. Visual search was slower and less accurate in hemianopic than in full-field viewing. With full-field viewing, there were improvements in search speed, fixation density, and number of fixations over the first 9 trials, then stable performance. With hemianopic viewing, there was a rapid shift of fixation into the blind field over the first 5-7 trials, followed by continuing gradual improvements in completion time, number of fixations, and fixation density over all 25 trials. We conclude that in the first minutes after onset of hemianopia, there is a biphasic pattern of adaptation to altered perception: an early rapid qualitative change that shifts visual search into the blind side, followed by more gradual gains in the efficiency of using this new strategy, a pattern that has parallels in other studies of motor learnin

    The neural network of saccadic foreknowledge.

    Get PDF
    Foreknowledge about upcoming events may be exploited to optimize behavioural responses. In a previous work, using an eye movement paradigm, we showed that different types of partial foreknowledge have different effects on saccadic efficiency. In the current study, we investigated the neural circuitry involved in processing of partial foreknowledge using functional magnetic resonance imaging. Fourteen subjects performed a mixed antisaccade, prosaccade paradigm with blocks of no foreknowledge, complete foreknowledge or partial foreknowledge about stimulus location, response direction or task. We found that saccadic foreknowledge is processed primarily within the well-known oculomotor network for saccades and antisaccades. Moreover, we found a consistent decrease in BOLD activity in the primary and secondary visual cortex in all foreknowledge conditions compared to the no-foreknowledge conditions. Furthermore we found that the different types of partial foreknowledge are processed in distinct brain areas: response foreknowledge is processed in the frontal eye field, while stimulus foreknowledge is processed in the frontal and parietal eye field. Task foreknowledge, however, revealed no positive BOLD correlate. Our results show different patterns of engagement in the saccade-related neural network depending upon precisely what type of information is known ahead

    Constraints on Parity-Even Time Reversal Violation in the Nucleon-Nucleon System and Its Connection to Charge Symmetry Breaking

    Full text link
    Parity-even time reversal violation (TRV) in the nucleon-nucleon interaction is reconsidered. The TRV ρ\rho-exchange interaction on which recent analyses of measurements are based is necessarily also charge-symmetry breaking (CSB). Limits on its strength gˉρ\bar{g}_\rho relative to regular ρ\rho-exchange are extracted from recent CSB experiments in neutron-proton scattering. The result gˉρ≀6.7×10−3\bar{g}_\rho\le 6.7\times 10^{-3} (95% CL) is considerably lower than limits inferred from direct TRV tests in nuclear processes. Properties of a1a_1-exchange and limit imposed by the neutron EDM are briefly discussed.Comment: RevTex, 8 pages. Factor ten error in cited neutron EDM corrected, discussion and two references adde

    Constraints on a Parity-Conserving/Time-Reversal-Non-Conserving Interaction

    Get PDF
    Time-Reversal-Invariance non-conservation has now been unequivocally demonstrated in a direct measurement at CPLEAR. What about tests of time-reversal-invariance in systems other than the kaon system? Tests of time-reversal-invariance belong to two classes: searches for parity violating (P-odd)/time-reversal-invariance-odd (T-odd) interactions, and for P-even/T-odd interactions (assuming CPT conservation this implies C-conjugation non-conservation). Limits on a P-odd/T-odd interaction follow from measurements of the electric dipole moment of the neutron (with a present upper limit of 6 x 10^-26 e.cm [95% C.L.]). It provides a limit on a P-odd/T-odd pion-nucleon coupling constant which is less than 10^-4 times the weak interaction strength. Experimental limits on a P-even/T-odd interaction are much less stringent. Following the standard approach of describing the nucleon-nucleon interaction in terms of meson exchanges, it can be shown that only charged rho-meson exchange and A_1 meson exchange can lead to a P-even/T-odd interaction. The better constraints stem from measurements of the electric dipole moment of the neutron and from measurements of charge-symmetry breaking in neutron-proton elastic scattering. The latter experiments were executed at TRIUMF (497 and 347 MeV) and at IUCF (183 MeV). Weak decay experiments may provide limits which will possibly be comparable. All other experiments, like gamma decay experiments, detailed balance experiments, polarization - analyzing power difference determinations, and five-fold correlation experiments with polarized incident nucleons and aligned nuclear targets, have been shown to be at least an order of magnitude less sensitive.Comment: 15 pages LaTeX, including 5 PostScript figures. Uses ijmpe1.sty. To appear in International Journal of Modern Physics E (IJMPE). Slight change in short abstrac

    The Off Shell ρ\rho-ω\omega Mixing in the QCD Sum Rules

    Full text link
    The q2q^2 dependence of the ρ−ω\rho-\omega mixing amplitude is analyzed with the use of the QCD sum rules and the dispersion relation. Going off shell the mixing decreases, changes sign at q2≃0.4mρ2>0q^2 \simeq 0.4 m_{\rho}^2 > 0 and is negative in the space like region. Implications of this result to the isospin breaking part of the nuclear force are discussed.Comment: 26 pages + 11 figures (PostScript

    QED radiative corrections to the decay pi^0 to e^+e^-

    Full text link
    We reconsider QED radiative corrections (RC) to the π0→e+e−\pi^{0}\to e^{+}e^{-} decay width. One kind of RC investigated earlier has a renormalization group origin and can be associated with the final state interaction of electron and positron. It determines the distribution of lepton pair invariant masses in the whole kinematic region. The other type of RC has a double-logarithmic character and is related to almost on-mass-shell behavior of the lepton form factors. The total effect of RC for the π0→e+e−\pi^{0}\to e^{+}e^{-} decay is estimated to be 3.2% and for the decay η→e+e−\eta \to e^{+}e^{-} is 4.3%.Comment: 12 pages, 3 figure

    Energy Dependence of the NN t-matrix in the Optical Potential for Elastic Nucleon-Nucleus Scattering

    Get PDF
    The influence of the energy dependence of the free NN t-matrix on the optical potential of nucleon-nucleus elastic scattering is investigated within the context of a full-folding model based on the impulse approximation. The treatment of the pole structure of the NN t-matrix, which has to be taken into account when integrating to negative energies is described in detail. We calculate proton-nucleus elastic scattering observables for 16^{16}O, 40^{40}Ca, and 208^{208}Pb between 65 and 200 MeV laboratory energy and study the effect of the energy dependence of the NN t-matrix. We compare this result with experiment and with calculations where the center-of-mass energy of the NN t-matrix is fixed at half the projectile energy. It is found that around 200 MeV the fixed energy approximation is a very good representation of the full calculation, however deviations occur when going to lower energies (65 MeV).Comment: 11 pages (revtex), 6 postscript figure

    The Momentum Dependence of the ρ−ω\rho-\omega Mixing Amplitude in a Hadronic Model

    Full text link
    We calculate the momentum dependence of the ρ−ω\rho-\omega mixing amplitude in a purely hadronic model. The basic assumption of the model is that the mixing amplitude is generated by NNˉN{\bar{N}} loops and thus driven entirely by the neutron-proton mass difference. The value of the amplitude at the ω\omega-meson point is expressed in terms of only the NNωNN\omega and the NNρNN\rho coupling constants. Using values for these couplings constrained by empirical two-nucleon data we obtain a value for the mixing amplitude in agreement with experiment. Extending these results to the spacelike region, we find a ρ−ω\rho-\omega contribution to the NN interaction that is strongly suppressed and opposite in sign relative to the conventional contribution obtained from using the constant on-shell value for the mixing amplitude.Comment: 11 pages, SCRI-12219
    • 

    corecore