20 research outputs found

    Robust fuzzy PSS design using ABC

    Get PDF
    This paper presents an Artificial Bee Colony (ABC) algorithm to tune optimal rule-base of a Fuzzy Power System Stabilizer (FPSS) which leads to damp low frequency oscillation following disturbances in power systems. Thus, extraction of an appropriate set of rules or selection of an optimal set of rules from the set of possible rules is an important and essential step toward the design of any successful fuzzy logic controller. Consequently, in this paper, an ABC based rule generation method is proposed for automated fuzzy PSS design to improve power system stability and reduce the design effort. The effectiveness of the proposed method is demonstrated on a 3-machine 9-bus standard power system in comparison with the Genetic Algorithm based tuned FPSS under different loading condition through ITAE performance indices

    Improved EMD-Based Complex Prediction Model for Wind Power Forecasting

    Get PDF
    As a response to rapidly increasing penetration of wind power generation in modern electric power grids, accurate prediction models are crucial to deal with the associated uncertainties. Due to the highly volatile and chaotic nature of wind power, employing complex intelligent prediction tools is necessary. Accordingly, this article proposes a novel improved version of empirical mode decomposition (IEMD) to decompose wind measurements. The decomposed signal is provided as input to a hybrid forecasting model built on a bagging neural network (BaNN) combined with K-means clustering. Moreover, a new intelligent optimization method named ChB-SSO is applied to automatically tune the BaNN parameters. The performance of the proposed forecasting framework is tested using different seasonal subsets of real-world wind farm case studies (Alberta and Sotavento) through a comprehensive comparative analysis against other well-known prediction strategies. Furthermore, to analyze the effectiveness of the proposed framework, different forecast horizons have been considered in different test cases. Several error assessment criteria were used and the obtained results demonstrate the superiority of the proposed method for wind forecasting compared to other methods for all test cases.© 2020 Institute of Electrical and Electronics Engineersfi=vertaisarvioitu|en=peerReviewed

    Smart load scheduling strategy utilising optimal charging of electric vehicles in power grids based on an optimisation algorithm

    Get PDF
    One of the main goals of any power grid is sustainability. The given study proposes a new method, which aims to reduce users’ anxiety especially at slow charging stations and improve the smart charging model to increase the benefits for the electric vehicles’ owners, which in turn will increase the grid stability. The issue under consideration is modelled as an optimisation problem to minimise the cost of charging. This approach levels the load effectively throughout the day by providing power to charge EVs’ batteries during the off‐peak hours and drawing it from the EVs’ batteries during peak‐demand hours of the day. In order to minimise the costs associated with EVs’ charging in the given optimisation problem, an improved version of an intelligent algorithm is developed. In order to evaluate the effectiveness of the proposed technique, it is implemented on several standard models with various loads, as well as compared with other optimisation methods. The superiority and efficiency of the proposed method are demonstrated, by analysing the obtained results and comparing them with the ones produced by the competitor techniques.© 2020. This is an open access article published by the IET under the Creative Commons Attribution LIcense (http://creativecommons.org/licenses/by/3.0/)fi=vertaisarvioitu|en=peerReviewed

    Short Term Wind Power Prediction Based on Improved Kriging Interpolation, Empirical Mode Decomposition, and Closed-Loop Forecasting Engine

    No full text
    The growing trend of wind generation in power systems and its uncertain nature have recently highlighted the importance of wind power prediction. In this paper a new wind power prediction approach is proposed which includes an improved version of Kriging Interpolation Method (KIM), Empirical Mode Decomposition (EMD), an information-theoretic feature selection method, and a closed-loop forecasting engine. In the proposed approach, EMD decomposes volatile wind power time series into more smooth and well-behaved components. To enhance the performance of EMD, Improved KIM (IKIM) is used instead of Cubic Spline (CS) fitting in it. The proposed IKIM includes the von Karman covariance model whose settings are optimized based on error variance minimization using an evolutionary algorithm. Each component obtained by this EMD decomposition is separately predicted by a closed-loop neural network-based forecasting engine whose inputs are determined by an information-theoretic feature selection method. Wind power prediction results are obtained by combining all individual forecasts of these components. The proposed wind power forecast approach is tested on the real-world wind farms in Spain and Alberta, Canada. The results obtained from the proposed approach are extensively compared with the results of many other wind power prediction methods

    POWER DISTRIBUTION OPTIMIZATION BASED ON DEMAND RESPOND WITH IMPROVED MULTI-OBJECTIVE ALGORITHM IN POWER SYSTEM PLANNING

    No full text
    In this article, a novel dynamic economic load dispatch with emission based on a multiobjective model (MODEED) considering demand side management (DSM) is presented. Moreover, the investigation and evaluation of impacts of DSM for the next day are considered. In other words, the aim of economical load dispatch is the suitable and optimized planning for all power units considering different linear and non-linear constrains for power system and generators. In this model, different constrains such as losses of transformation network, impacts of valve-point, rampup and ramp-down, the balance of production and demand, the prohibited areas, and the limitations of production are considered as an optimization problem. The proposed model is solved by a novel modified multi-objective artificial bee colony algorithm (MOABC). In order to analyze the effects of DSM on the supply side, the proposed MODEED is evaluated on different scenarios with or without DSM. Indeed, the proposed MOABC algorithm tries to find an optimal solution for the existence function by assistance of crowding distance and Pareto theory. Crowding distance is a suitable criterion to estimate Pareto solutions. The proposed model is carried out on a six-unit test system, and the obtained numerical analyses are compared with the obtained results of other optimization methods. The obtained results of simulations that have been provided in the last section demonstrate the higher efficiency of the proposed optimization algorithm based on Pareto criterion. The main benefits of this algorithm are its fast convergence and searching based on circle movement. In addition, it is obvious from the obtained results that the proposed MODEED with DSM can present benefits for all consumers and generation companies

    EXECUTION OF SYNTHETIC BAYESIAN MODEL AVERAGE FOR SOLAR ENERGY FORECASTING

    No full text
    Accurate photovoltaic (PV) forecasting is quite crucial in planning and in the regular oper ation of power system. Stochastic habit along with the high risks in PV signal uncertainty and a probabilistic forecasting model is required to address the numerical weather pre diction (NWP) underdispersion. In this study, a new synthetic prediction process based on Bayesian model averaging (BMA) and Ensemble Learning is developed. The pro posed model is initiated by the improved self-organizing map (ISOM) clustering K-fold cross-validation for the training process. To provide desirable learning model for different input samples, three learners including long short-term memory (LSTM) network, gen eral regression neural network (GRNN), and non-linear auto-regressive eXogenous NN (NARXNN) are employed. The proposed BMA approach is combined with the output of the learners to obtain accurate and desirable outcomes. Different models are precisely compared with the obtained numerical results over real-world engineering test site, that is, Arta-Solar case study. The numerical analysis and recorded results validate the performance and superiority of the proposed model

    Optimal Distribution of Reactive Power based on Shark Smell Optimization with Pareto Criterion in Power System

    No full text
    In recent years, the electrical industrial convert to a competitive market in some of the countries which is named a deregulated systems. To maintain the stability of power grids and reliable power transmission, in addition to providing active power, reactive power supply is also needed to improve the safety system should be optimized by the operation of the power system. In this paper, we proposed a new solution to management the reactive power which is presented as a long term and non-linear optimization problem. Hence, the planning and improving the power market based on optimal distribution of reactive power has been presented as an optimization problem. The mentioned problem is solved by a new meta-heuristic algorithm which is based on shark smell abilities named Shark Smell Optimization (SSO). This algorithm improved with Pareto criterion to increase the abilities of proposed strategy in nonlinear problem with different constrains. The effectiveness of the proposed method has been applied over tow power system case studies through the comparison with other techniques

    Modified Harmony Search Algorithm Based Unit Commitment with Plug-in Hybrid Electric Vehicles

    No full text
    ABSTRACT Plug-in Hybrid Electric KEYWORDS: Unit Commitment (UC), Vehicle-to-Grid (V2G), Improved Harmony Search Algorithm, Plug-in Hybrid Electric Vehicle (PHEV)
    corecore