74 research outputs found
P73 regulates cisplatin-induced apoptosis in ovarian cancer cells via a calcium/calpain-dependent mechanism
P73 is important in drug-induced apoptosis in some cancer cells, yet its role in the regulation of chemosensitivity in ovarian cancer (OVCA) is poorly understood. Furthermore, if and how the deregulation of p73-mediated apoptosis confers resistance to cisplatin (CDDP) treatment is unclear. Here we demonstrate that TAp73α over-expression enhanced CDDP-induced PARP cleavage and apoptosis in both chemosensitive (OV2008 and A2780s) and their resistant counterparts (C13* and A2780cp) and another chemoresistant OVCA cells (Hey); in contrast, the effect of ΔNp73α over-expression was variable. P73α downregulation attenuated CDDP-induced PUMA and NOXA upregulation and apoptosis in OV2008 cells. CDDP decreased p73α steady-state protein levels in OV2008, but not in C13*, although the mRNA expression was identical. CDDP-induced p73α downregulation was mediated by a calpain-dependent pathway. CDDP induced calpain activation and enhanced its cytoplasmic interaction and co-localization with p73α in OV2008, but not C13* cells. CDDP increased the intracellular calcium concentration ([Ca2+]i) in OV2008 but not C13* whereas cyclopiazonic acid (CPA), a Ca2+-ATPase inhibitor, caused this response and calpain activation, p73α processing and apoptosis in both cell types. CDDP-induced [Ca2+]i increase in OV2008 cells was not effected by the elimination of extracellular Ca2+, but this was attenuated by the depletion of internal Ca2+ store, indicating that mobilization of intracellular Ca2+] stores was potentially involved. These findings demonstrate that p73α and its regulation by the Ca2+-mediated calpain pathway are involved in CDDP-induced apoptosis in OVCA cells and that dysregulation of Ca2+/calpain/p73 signaling may in part be the pathophysiology of CDDP resistance. Understanding the cellular and molecular mechanisms of chemoresistance will direct the development of effective strategies for the treatment of chemoresistant OVCA
Drug-induced caspase 8 upregulation sensitises cisplatin-resistant ovarian carcinoma cells to rhTRAIL-induced apoptosis
BACKGROUND: Drug resistance is a major problem in ovarian cancer. Triggering apoptosis using death ligands such as tumour necrosis factor-related apoptosis inducing ligand (TRAIL) might overcome chemoresistance. METHODS: We investigated whether acquired cisplatin resistance affects sensitivity to recombinant human (rh) TRAIL alone or in combination with cisplatin in an ovarian cancer cell line model consisting of A2780 and its cisplatin-resistant subline CP70. RESULTS: Combining cisplatin and rhTRAIL strongly enhanced apoptosis in both cell lines. CP70 expressed less caspase 8 protein, whereas mRNA levels were similar compared with A2780. Pre-exposure of particularly CP70 to cisplatin resulted in strongly elevated caspase 8 protein and mRNA levels. Caspase 8 mRNA turnover and protein stability in the presence or absence of cisplatin did not differ between both cell lines. Cisplatin-induced caspase 8 protein levels were essential for the rhTRAIL-sensitising effect as demonstrated using caspase 8 small-interfering RNA (siRNA) and caspase-8 overexpressing constructs. Cellular FLICE-inhibitory protein (c-FLIP) and p53 siRNA experiments showed that neither an altered caspase 8/c-FLIP ratio nor a p53-dependent increase in DR5 membrane expression following cisplatin were involved in rhTRAIL sensitisation. CONCLUSION: Cisplatin enhances rhTRAIL-induced apoptosis in cisplatin-resistant ovarian cancer cells, and induction of caspase 8 protein expression is the key factor of rhTRAIL sensitisation. British Journal of Cancer (2011) 104, 1278-1287. doi:10.1038/bjc.2011.84 www.bjcancer.com (C) 2011 Cancer Research U
Self-assembled amyloid fibrils with controllable conformational heterogeneity
Amyloid fibrils are a hallmark of neurodegenerative diseases and exhibit a conformational diversity that governs their pathological functions. Despite recent findings concerning the pathological role of their conformational diversity, the way in which the heterogeneous conformations of amyloid fibrils can be formed has remained elusive. Here, we show that microwave-assisted chemistry affects the self-assembly process of amyloid fibril formation, which results in their conformational heterogeneity. In particular, microwave-assisted chemistry allows for delicate control of the thermodynamics of the self-assembly process, which enabled us to tune the molecular structure of ??-lactoglobulin amyloid fibrils. The heterogeneous conformations of amyloid fibrils, which can be tuned with microwave-assisted chemistry, are attributed to the microwave-driven thermal energy affecting the electrostatic interaction during the self-assembly process. Our study demonstrates how microwave-assisted chemistry can be used to gain insight into the origin of conformational heterogeneity of amyloid fibrils as well as the design principles showing how the molecular structures of amyloid fibrils can be controlledopen0
Interaction between Amyloid Beta Peptide and an Aggregation Blocker Peptide Mimicking Islet Amyloid Polypeptide
Assembly of amyloid-beta peptide (Aβ) into cytotoxic oligomeric and fibrillar aggregates is believed to be a major pathologic event in Alzheimer's disease (AD) and interfering with Aβ aggregation is an important strategy in the development of novel therapeutic approaches. Prior studies have shown that the double N-methylated analogue of islet amyloid polypeptide (IAPP) IAPP-GI, which is a conformationally constrained IAPP analogue mimicking a non-amyloidogenic IAPP conformation, is capable of blocking cytotoxic self-assembly of Aβ. Here we investigate the interaction of IAPP-GI with Aβ40 and Aβ42 using NMR spectroscopy. The most pronounced NMR chemical shift changes were observed for residues 13–20, while residues 7–9, 15–16 as well as the C-terminal half of Aβ - that is both regions of the Aβ sequence that are converted into β-strands in amyloid fibrils - were less accessible to solvent in the presence of IAPP-GI. At the same time, interaction of IAPP-GI with Aβ resulted in a concentration-dependent co-aggregation of Aβ and IAPP-GI that was enhanced for the more aggregation prone Aβ42 peptide. On the basis of the reduced toxicity of the Aβ peptide in the presence of IAPP-GI, our data are consistent with the suggestion that IAPP-GI redirects Aβ into nontoxic “off-pathway” aggregates
A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles
This review presents an introduction to the synthesis of metallic nanoparticles by radiation-induced method, especially gamma irradiation. This method offers some benefits over the conventional methods because it provides fully reduced and highly pure nanoparticles free from by-products or chemical reducing agents, and is capable of controlling the particle size and structure. The nucleation and growth mechanism of metallic nanoparticles are also discussed. The competition between nucleation and growth process in the formation of nanoparticles can determine the size of nanoparticles which is influenced by certain parameters such as the choice of solvents and stabilizer, the precursor to stabilizer ratio, pH during synthesis, and absorbed dose
Ceftriaxone-associated nephrolithiasis and gallstone in adults
Ghodsiyeh Azarkar,1 Motahare Mahi Birjand,2 Alireza Ehsanbakhsh,3 Bita Bijari,1 Mohammad Reza Abedini,4 Masood Ziaee1 1Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran; 2Student Research Committee, Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; 3Department of Radiology, Valiasr Hospital, Birjand University of Medical Sciences, Birjand, Iran; 4Cellular and Molecular Research Center, Department of Pharmacology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran Background: Ceftriaxone (CTX) is widely used for the treatment of bacterial infections; however, side effects such as gallstone and nephrolithiasis have been reported in children. There is limited information about urinary tract calculi as CTX side effects in adults. Therefore, the present study was aimed to evaluate the incidence of gallstone and nephrolithiasis following CTX administration.Methods: The present study was conducted in the Vali-e-Asr Hospital. Eighty-four patients with various infectious diseases with different daily treatment (mean ± SD: 4.19±2.54) were included in this study, consisting of 49 females and 35 males. The mean of total doses used in patients was 10.2143 (SD: 5.8585). To detect possible gallstone, gallbladder sludge, and urolithiasis, patients were evaluated by serial ultrasound before and after CTX treatment. Patients with renal and hepatobiliary dysfunction were excluded from the study and did not receive any nephrotoxic drugs during this study. Demographic parameters including age, sex, body mass index, dosage of CTX, as well as the duration of treatment and hospitalization were determined. Statistical significances were determined using Fisher’s exact test and independent t-test.Results: Results from our study showed that the incidence of gallstone and nephrolithiasis were 8.8% and 1.5% following CTX administration, respectively. Surprisingly, we found a significant correlation in terms of age between patients with and without gallstone (P=0.03).Conclusion: Our findings suggest that the patients’ age might play a role in the development of such a complication. This indicates the need for a close monitoring of CTX-treated patients to assess the possible formation of gallstone and nephrolithiasis. Keywords: ceftriaxone, gallstones, nephrolithiasis, sonography 
- …