365 research outputs found

    Association between vitamin d deficiencies in sarcoidosis with disease activity, course of disease and stages of lung involvements

    Get PDF
    Background: Despite negative association between 25-hydroxy vitamin D and incidence of many chronic respiratory diseases, this feature was not well studied in sarcoidosis. Current study investigated the association between 25-hydroxy vitamin D deficiency with sarcoidosis chronicity, disease activity, extra-pulmonary skin manifestations, urine calcium level and pulmonary function status in Iranian sarcoidosis patients. Results of this study along with future studies, will supply more effective programs for sarcoidosis treatment. Methods: Eighty sarcoidosis patients in two groups of insufficient serum level and sufficient serum level of 25-hydroxy vitamin D were studied. Course of sarcoidosis was defined as acute and chronic sarcoidosis. Pulmonary function test (PFT) was assessed by spirometry. Skin involvements were defined as biopsy proven skin sarcoidosis. 24-hour urine calcium level was used to specify the disease activity. Stages of lung involvements were obtained by CT-scan and chest X-ray. The statistical analyses were evaluated using Statistical Package for the Social Sciences. Results: A significant negative correlation was obtained between vitamin D deficiency in sarcoidosis patients and disease chronic course and stages two to four of lung involvements. Considering other parameters of the disease and vitamin D deficiency, no significant correlation was detected. Conclusions: In conclusion, results of the current study implies in the role of vitamin 25(OH)D deficiencies in predicting the course of chronic sarcoidosis. Furthermore, it was concluded that vitamin 25(OH)D deficiency can direct pulmonary sarcoidosis toward stage 2–4 of lung involvements

    Study of Intraventricular Hemorrhage in VLBW Neonates Admitted in Al-Zahra Hospital, Tabriz, Iran

    Get PDF
    Introduction and Aim: Intra-ventricular hemorrhage (IVH) is an important predictor of adverse neurodevelopmental outcome. IVH risk factor identification may conduct improvement of quality of care in Neonatal Intensive Care Units. The aim of the current study was to determine possible risk factors associated with IVH in VLBW neonates admitted in our hospital. Patients and Methods: All neonates with birth weight below 1500 gr admitted to NICU. Cranial ultrasonography was done for premature neonates weighed <1000 g in 3 to 5 days and in 1 month again. In premature infants weighed >1000 g, sonography was done in 7 days and 30 days of life respectively. If there is any conditions such as apnea, seizure, significant decrease in level of hemoglobin, increased head circumference, increased oxygen consumption, and other significant changes another sonography was done again. Exclusion criteria were cerebral malformations, metabolic disturbances, chromosomal anomalies, central nervous system infection, and genetic syndromes. Data was analyzed by SPSS ver 16.0 (SPSS Inc, Chicago, IL, USA) Results: In this study 64 cases with IVH and 110 without IVH were included. Mean of gestational age was 28.78±2.08. From neonates, 54.6% were boys and 45.4% were girls. Vaginal delivery and cesarean section was done in 56 (32.2%) and 118(67.8%) cases respectively. Mean±SD of pH in cases with IVH and without IVH was 7.19±0.22 and 7.30±0.12 respectively(p=0.001). Mean ±SD of pco2 in cases with IVH and without IVH was 65.15±29.89 and 49.88±40.89 respectively(p=0.001). Mean of 5th min APGAR score in patients required CPR was 7.36±1.57 and in patients without CPR was 8.68±1.25(P=0.001). From cases with IVH, hydrocephaly was detected in 20 cases. From cases without IVH, hydrocephaly was detected in 6 cases. Result of chi-square showed significant correlation between IVH and prematurity( X2=21.94, df=1, P<0.001). From cases with IVH, 18 cases (28.1%) expired. From cases without IVH, 11 cases(10%) expired(X2=9.398, df=1, P=0.002). Results of chi-square test showed that there were a correlation between IVH and PDA, pressure support, surfactant therapy, inotrop drug administration, vaginal delivery, neonatal resuscitation, and antenatal corticosteroid therapy(p<0.05). Hyaline membrane disease, history of preclampsia in mother was significantly higher in cases without IVH(Chi-square, p<0.05). Conclusion: PDA, pressure support, surfactant therapy, inotrop drug administration, vaginal delivery, neonatal resuscitation, and antenatal corticosteroid therapy were significantly higher in cases with IVH. Hyaline membrane disease and preeclampsia in mother was significantly higher in cases without IVH.Keywords: Intraventricular hemorrhage, APGAR, low birth weight, hyaline membrane disease, corticosteroid, surfactant, inotrop, pre-eclampsi

    Plasmonically enhanced metal-insulator multistacked photodetectors with separate absorption and collection junctions for near-infrared applications

    Get PDF
    Plasmonically enhanced metal-insulator-metal (MIM) type structures are popular among perfect absorbers and photodetectors in which the field enhancement (for increased absorption) mechanism is directly coupled with collection (photocurrent) processes. In this work we propose a device structure that decouples absorption and collection parts for independent optimization. Double-stacked MIM (i.e. MIMIM) photodetectors operating in the near-infrared (NIR) spectrum up to 1200 nm wavelength are demonstrated. In the absorbing MIM (at the top side), we have used Silver nanoparticles resulting from dewetting, yielding a very low reflection of 10% for the most part of the 400 to 1000 nm wavelength range. An unconventional plasmonic material, Chromium, exhibits an absorption peak of over 80% at 1000 nm. The complete device has been fabricated and the photo-collection tunneling MIM (at the bottom) suppresses the leakage current by metal workfunction difference. An optimized stack consisting of Silver-Hafnium Oxide-Chromium-Aluminum Oxide-Silver nanoparticles (from bottom to top) yields a dark current of 7 nA and a photoresponsivity peak of 0.962 mA/W at 1000 nm and a full width at half maximum of 300 nm, while applied bias is 50 mV and device areas are 300 μm × 600 μm. © 2017 The Author(s)

    Magnetophoretic circuits for digital control of single particles and cells.

    Get PDF
    The ability to manipulate small fluid droplets, colloidal particles and single cells with the precision and parallelization of modern-day computer hardware has profound applications for biochemical detection, gene sequencing, chemical synthesis and highly parallel analysis of single cells. Drawing inspiration from general circuit theory and magnetic bubble technology, here we demonstrate a class of integrated circuits for executing sequential and parallel, timed operations on an ensemble of single particles and cells. The integrated circuits are constructed from lithographically defined, overlaid patterns of magnetic film and current lines. The magnetic patterns passively control particles similar to electrical conductors, diodes and capacitors. The current lines actively switch particles between different tracks similar to gated electrical transistors. When combined into arrays and driven by a rotating magnetic field clock, these integrated circuits have general multiplexing properties and enable the precise control of magnetizable objects

    Whole genome sequencing identifies a duplicated region encompassing Xq13.2q13.3 in a large Iranian family with intellectual disability

    No full text
    Background The X chromosome has historically been one of the most thoroughly investigated chromosomes regarding intellectual disability (ID), whose etiology is attributed to many factors including copy number variations (CNVs). Duplications of the long arm of the X chromosome have been reported in patients with ID, short stature, facial anomalies, and in many cases hypoplastic genitalia and/or behavioral abnormalities. Methods Here, we report on a large Iranian family with X‐linked ID caused by a duplication on the X chromosome identified by whole genome sequencing in combination with linkage analysis. Results Seven affected males in different branches of the family presented with ID, short stature, seizures, facial anomalies, behavioral abnormalities (aggressiveness, self‐injury, anxiety, impaired social interactions, and shyness), speech impairment, and micropenis. The duplication of the region Xq13.2q13.3, which is ~1.8 Mb in size, includes seven protein‐coding OMIM genes. Three of these genes, namely SLC16A2, RLIM, and NEXMIF, if impaired, can lead to syndromes presenting with ID. Of note, this duplicated region was located within a linkage interval with a LOD score >3. Conclusion Our report indicates that CNVs should be considered in multi‐affected families where no candidate gene defect has been identified in sequencing data analysis

    Optical-fiber thermal-wave-cavity technique to study thermal properties of silver/clay nanofluids

    Get PDF
    Thermal properties enhancement of nanofluids have varied strongly with synthesis technique, particle size and type, concentration and agglomeration with time. This study explores the possibility of changing the thermal wave signal of Ag/clay nanofluids into a thermal diffusivity measurement at well dispersion or aggregation of nanoparticles in the base fluid. Optical-Fiber Thermal-Wave-Cavity (OF-TWC) technique was achieved by using a small amount of nanofluid (only 0.2 mL) between fiber optic tip and the Pyroelectric detector and the cavity-length scan was performed. We established the accuracy and precision of this technique by comparing the thermal diffusivity of distilled water to values reported in the literature. Assuming a linear Pyroelectric signal response, the results show that adding clay reduced the thermal diffusivity of water, while increasing the Ag concentration from 1 to 5 wt.% increased the thermal diffusivity of the Ag nanofluid from 1.524×10−3 to 1.789×10−3 cm2/s. However, in particular, nanoparticles show the tendency to form aggregates over time that correlated with the performance change of thermal properties of nanofluid. Our results confirm the high sensitivity of OF-TWC technique raises the potential to be applied to measuring the optical and thermal properties of nanofluids. Furthermore, this technique allows the extraction of information not obtained using other traditional techniques

    Comprehensive genotype‐phenotype correlation in AP‐4 deficiency syndrome; Adding data from a large cohort of Iranian patients

    No full text
    Mutations in adaptor protein complex‐4 (AP‐4) genes have first been identified in 2009, causing a phenotype termed as AP‐4 deficiency syndrome. Since then several patients with overlapping phenotypes, comprised of intellectual disability (ID) and spastic tetraplegia have been reported. To delineate the genotype‐phenotype correlation of the AP‐4 deficiency syndrome, we add the data from 30 affected individuals from 12 out of 640 Iranian families with ID in whom we detected disease‐causing variants in AP‐4 complex subunits, using next‐generation sequencing. Furthermore, by comparing genotype‐phenotype findings of those affected individuals with previously reported patients, we further refine the genotype‐phenotype correlation in this syndrome. The most frequent reported clinical findings in the 101 cases consist of ID and/or global developmental delay (97%), speech disorders (92.1%), inability to walk (90.1%), spasticity (77.2%), and microcephaly (75.2%). Spastic tetraplegia has been reported in 72.3% of the investigated patients. The major brain imaging findings are abnormal corpus callosum morphology (63.4%) followed by ventriculomegaly (44.5%). Our result might suggest the AP‐4 deficiency syndrome as a major differential diagnostic for unknown hereditary neurodegenerative disorders

    Mutations in NSUN2 cause autosomal-recessive intellectual disability

    No full text
    With a prevalence between 1 and 3%, hereditary forms of intellectual disability (ID) are among the most important problems in health care. Particularly, autosomal-recessive forms of the disorder have a very heterogeneous molecular basis, and genes with an increased number of disease-causing mutations are not common. Here, we report on three different mutations (two nonsense mutations, c.679C>T [p.Gln227( *)] and c.1114C>T [p.Gln372( *)], as well as one splicing mutation, g.6622224A>C [p.Ile179Argfs( *)192]) that cause a loss of the tRNA-methyltransferase-encoding NSUN2 main transcript in homozygotes. We identified the mutations by sequencing exons and exon-intron boundaries within the genomic region where the linkage intervals of three independent consanguineous families of Iranian and Kurdish origin overlapped with the previously described MRT5 locus. In order to gain further evidence concerning the effect of a loss of NSUN2 on memory and learning, we constructed a Drosophila model by deleting the NSUN2 ortholog, CG6133, and investigated the mutants by using molecular and behavioral approaches. When the Drosophila melanogaster NSUN2 ortholog was deleted, severe short-term-memory (STM) deficits were observed; STM could be rescued by re-expression of the wild-type protein in the nervous system. The humans homozygous for NSUN2 mutations showed an overlapping phenotype consisting of moderate to severe ID and facial dysmorphism (which includes a long face, characteristic eyebrows, a long nose, and a small chin), suggesting that mutations in this gene might even induce a syndromic form of ID. Moreover, our observations from the Drosophila model point toward an evolutionarily conserved role of RNA methylation in normal cognitive development
    corecore