10 research outputs found

    Enhanced Recovery After Surgery (ERAS) Protocols In General Surgery: A Review Of Implementation And Outcomes

    Get PDF
    ERAS is a group of protocols that aim at affecting positively patients & surrounding lives. surgeons, nurses, physiotherapists, anesthetists, and even healthcare centers hospitals, labs, and pharmacies. Reducing the cost for both hospitals &patients, decreasing the duration of residency in hospitals, and improving patient compliance, developing performance & increasing teamwork between medical staff and patients all fall under the advantages of ERAS. Since it affects the 3 stages of any operation (preoperative-intraoperative-perioperative) it was necessary to implement a suitable protocol for each patient to achieve the best results mostly quitting smoking, fasting for a period before surgery, maintaining body temperature, pressure, and glucose level and the postoperative instructions , care & nutrition to guarantee success and avoidance to recurrence or complications

    Critically ill patients with diabetes and Middle East respiratory syndrome:a multi-center observational study

    Get PDF
    Background: Diabetes is a risk factor for infection with coronaviruses. This study describes the demographic, clinical data, and outcomes of critically ill patients with diabetes and Middle East Respiratory Syndrome (MERS).Methods: This retrospective cohort study was conducted at 14 hospitals in Saudi Arabia (September 2012–January 2018). We compared the demographic characteristics, underlying medical conditions, presenting symptoms andsigns, management and clinical course, and outcomes of critically ill patients with MERS who had diabetes compared to those with no diabetes. Multivariable logistic regression analysis was performed to determine ifdiabetes was an independent predictor of 90-day mortality.Results: Of the 350 critically ill patients with MERS, 171 (48.9%) had diabetes. Patients with diabetes were more likely to be older, and have comorbid conditions, compared to patients with no diabetes. They were more likely topresent with respiratory failure requiring intubation, vasopressors, and corticosteroids. The median time to clearance of MERS-CoV RNA was similar (23 days (Q1, Q3: 17, 36) in patients with diabetes and 21.0 days (Q1, Q3: 10, 33) in patients with no diabetes). Mortality at 90 days was higher in patients with diabetes (78.9% versus 54.7%, p <0.0001). Multivariable regression analysis showed that diabetes was an independent risk factor for 90-day mortality(odds ratio, 2.09; 95% confidence interval, 1.18–3.72).Conclusions: Half of the critically ill patients with MERS have diabetes; which is associated with more severe disease. Diabetes is an independent predictor of mortality among critically patients with MERS

    Critically ill patients with diabetes and Middle East respiratory syndrome:a multi-center observational study

    Get PDF
    Background: Diabetes is a risk factor for infection with coronaviruses. This study describes the demographic, clinical data, and outcomes of critically ill patients with diabetes and Middle East Respiratory Syndrome (MERS).Methods: This retrospective cohort study was conducted at 14 hospitals in Saudi Arabia (September 2012–January 2018). We compared the demographic characteristics, underlying medical conditions, presenting symptoms andsigns, management and clinical course, and outcomes of critically ill patients with MERS who had diabetes compared to those with no diabetes. Multivariable logistic regression analysis was performed to determine ifdiabetes was an independent predictor of 90-day mortality.Results: Of the 350 critically ill patients with MERS, 171 (48.9%) had diabetes. Patients with diabetes were more likely to be older, and have comorbid conditions, compared to patients with no diabetes. They were more likely topresent with respiratory failure requiring intubation, vasopressors, and corticosteroids. The median time to clearance of MERS-CoV RNA was similar (23 days (Q1, Q3: 17, 36) in patients with diabetes and 21.0 days (Q1, Q3: 10, 33) in patients with no diabetes). Mortality at 90 days was higher in patients with diabetes (78.9% versus 54.7%, p <0.0001). Multivariable regression analysis showed that diabetes was an independent risk factor for 90-day mortality(odds ratio, 2.09; 95% confidence interval, 1.18–3.72).Conclusions: Half of the critically ill patients with MERS have diabetes; which is associated with more severe disease. Diabetes is an independent predictor of mortality among critically patients with MERS

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Background: Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. // Methods: We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung's disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. // Findings: We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung's disease) from 264 hospitals (89 in high-income countries, 166 in middle-income countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in low-income countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. // Interpretation: Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between low-income, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Goal Programming and Mathematical Modelling for Developing a Capacity Planning Decision Support System-Based Framework in Higher Education Institutions

    No full text
    Achieving the Saudi Kingdom&rsquo;s vision 2030 in the higher education sector requires higher education institutions to make a significant simultaneous change in their current practices. This encompasses the transitioning of government-funded educational institutions to be financially independent. Therefore, a prompt, agile transition is required while maintaining a positive socioeconomic impact, entrepreneurship and innovation, and high-quality education. This necessitates the transition to lean processes and the review of current practices. One of the most vital processes in educational institutions is student admission/enrollment capacity planning. This study puts forward a capacity planning decision support system (DSS)-based framework for university student enrollment. The framework was applied to the case of KAU, where current practice and challenges are presented, and from which data were collected. A top-down/bottom-up approach was followed and applied using the goal programming technique and a developed mathematical model, respectively. Results show that the proposed framework effectively affects student admission/enrollment capacity planning on strategic and operational levels. Moreover, it can be used in other planning aspects of higher education in universities, such as human resources planning, teaching load planning, faculty-to-student ratios, accreditation, quality requirements, lab capacity planning, equipment/teaching aids procurement, and financial planning, to mention a few. The implications of this study include assisting decision-makers in higher education institutions in matching their admission/enrollment capacity of student numbers between the macro-strategic and the micro-operational level

    Goal Programming and Mathematical Modelling for Developing a Capacity Planning Decision Support System-Based Framework in Higher Education Institutions

    No full text
    Achieving the Saudi Kingdom’s vision 2030 in the higher education sector requires higher education institutions to make a significant simultaneous change in their current practices. This encompasses the transitioning of government-funded educational institutions to be financially independent. Therefore, a prompt, agile transition is required while maintaining a positive socioeconomic impact, entrepreneurship and innovation, and high-quality education. This necessitates the transition to lean processes and the review of current practices. One of the most vital processes in educational institutions is student admission/enrollment capacity planning. This study puts forward a capacity planning decision support system (DSS)-based framework for university student enrollment. The framework was applied to the case of KAU, where current practice and challenges are presented, and from which data were collected. A top-down/bottom-up approach was followed and applied using the goal programming technique and a developed mathematical model, respectively. Results show that the proposed framework effectively affects student admission/enrollment capacity planning on strategic and operational levels. Moreover, it can be used in other planning aspects of higher education in universities, such as human resources planning, teaching load planning, faculty-to-student ratios, accreditation, quality requirements, lab capacity planning, equipment/teaching aids procurement, and financial planning, to mention a few. The implications of this study include assisting decision-makers in higher education institutions in matching their admission/enrollment capacity of student numbers between the macro-strategic and the micro-operational level

    Tocilizumab Outcomes in Critically Ill COVID-19 Patients Admitted to the ICU and the Role of Non-Tocilizumab COVID-19-Specific Medical Therapeutics

    No full text
    Background: Tocilizumab is a monoclonal antibody proposed to manage cytokine release syndrome (CRS) associated with severe COVID-19. Previously published reports have shown that tocilizumab may improve the clinical outcomes of critically ill patients admitted to the ICU. However, no precise data about the role of other medical therapeutics concurrently used for COVID-19 on this outcome have been published. Objectives: We aimed to compare the overall outcome of critically ill COVID-19 patients admitted to the ICU who received tocilizumab with the outcome of matched patients who did not receive tocilizumab while controlling for other confounders, including medical therapeutics for critically ill patients admitted to ICUs. Methods: A prospective, observational, multicenter cohort study was conducted among critically ill COVID-19 patients admitted to the ICU of 14 hospitals in Saudi Arabia between 1 March 2020, and October 31, 2020. Propensity-score matching was utilized to compare patients who received tocilizumab to patients who did not. In addition, the log-rank test was used to compare the 28 day hospital survival of patients who received tocilizumab with those who did not. Then, a multivariate logistic regression analysis of the matched groups was performed to evaluate the impact of the remaining concurrent medical therapeutics that could not be excluded via matching 28 day hospital survival rates. The primary outcome measure was patients' overall 28 day hospital survival, and the secondary outcomes were ICU length of stay and ICU survival to hospital discharge. Results: A total of 1470 unmatched patients were included, of whom 426 received tocilizumab. The total number of propensity-matched patients was 1278. Overall, 28 day hospital survival revealed a significant difference between the unmatched non-tocilizumab group (586; 56.1%) and the tocilizumab group (269; 63.1%) (p-value = 0.016), and this difference increased even more in the propensity-matched analysis between the non-tocilizumab group (466.7; 54.6%) and the tocilizumab group (269; 63.1%) (p-value = 0.005). The matching model successfully matched the two groups' common medical therapeutics used to treat COVID-19. Two medical therapeutics remained significantly different, favoring the tocilizumab group. A multivariate logistic regression was performed for the 28 day hospital survival in the propensity-matched patients. It showed that neither steroids (OR: 1.07 (95% CI: 0.75-1.53)) (p = 0.697) nor favipiravir (OR: 1.08 (95% CI: 0.61-1.9)) (p = 0.799) remained as a predictor for an increase in 28 day survival. Conclusion: The tocilizumab treatment in critically ill COVID-19 patients admitted to the ICU improved the overall 28 day hospital survival, which might not be influenced by the concurrent use of other COVID-19 medical therapeutics, although further research is needed to confirm this

    Machine learning decision tree algorithm role for predicting mortality in critically ill adult COVID-19 patients admitted to the ICU

    No full text
    Background: Coronavirus disease-19 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is currently a major cause of intensive care unit (ICU) admissions globally. The role of machine learning in the ICU is evolving but currently limited to diagnostic and prognostic values. A decision tree (DT) algorithm is a simple and intuitive machine learning method that provides sequential nonlinear analysis of variables. It is simple and might be a valuable tool for bedside physicians during COVID-19 to predict ICU outcomes and help in critical decision-making like end-of-life decisions and bed allocation in the event of limited ICU bed capacities. Herein, we utilized a machine learning DT algorithm to describe the association of a predefined set of variables and 28-day ICU outcome in adult COVID-19 patients admitted to the ICU. We highlight the value of utilizing a machine learning DT algorithm in the ICU at the time of a COVID-19 pandemic. Methods: This was a prospective and multicenter cohort study involving 14 hospitals in Saudi Arabia. We included critically ill COVID-19 patients admitted to the ICU between March 1, 2020, and October 31, 2020. The predictors of 28-day ICU mortality were identified using two predictive models: conventional logistic regression and DT analyses. Results: There were 1468 critically ill COVID-19 patients included in the study. The 28-day ICU mortality was 540 (36.8 %), and the 90-day mortality was 600 (40.9 %). The DT algorithm identified five variables that were integrated into the algorithm to predict 28-day ICU outcomes: need for intubation, need for vasopressors, age, gender, and PaO2/FiO2 ratio. Conclusion: DT is a simple tool that might be utilized in the ICU to identify critically ill COVID-19 patients who are at high risk of 28-day ICU mortality. However, further studies and external validation are still required
    corecore