182 research outputs found

    Bovine Parasitic Gastroenteritis and Bronchitis: Control vs Immunity

    Get PDF
    This thesis comprises a series of studies carried out (1) to review the literature on parasitic gastroenteritis and bronchitis with special emphasis on epidemiology, immunity and control methods (2) to determine the influence of anthelmintic prophylaxis in calves on their subsequent immunity to Ostertagia, Cooperia and Dictyocaulus as yearlings (3) to assess the parasitological status of adult dairy cattle and (4) to compare the efficacy of several techniques used in these studies

    Characterisation of plasticised PVDF–HFP polymer electrolytes

    Get PDF
    This study focuses on the preparation and characterisation of sodium ion conducting polymer electrolytes. Poly(vinylidenefluoride-co-hexafluoropropylene) has been used as the host matrix and hydrated sodium sulphide (Na2S.9H2O) salt as the source of charge carriers in the polymer electrolyte system. To the highest conducting polymer–salt electrolyte, different concentrations of equal weight of propylene carbonate and diethyl carbonate mixture have been added, and the electrolytes have been characterised by X-ray diffraction, Fourier transform infrared spectrometry, scanning electron microscopy and electrochemical impedance spectroscopy. The room temperature ionic conductivity of 1?3461024 S cm21 for the unplasticised electrolyte with a composition of 65 wt-% poly(vinylidenefluoride-co-hexafluoropropylene)–35 wt-%Na2S increased to 3?4961024 S cm21 when 30 wt-% propylene carbonate/diethyl carbonate (w/w51) plasticisers were added

    Induction of innate immune response following infectious bronchitis corona virus infection in the respiratory tract of chickens

    Get PDF
    AbstractInfectious bronchitis virus (IBV) replicates in the epithelial cells of trachea and lungs of chicken, however the mechanism of generation of innate immune response against IBV infection in these tissues has not been fully characterized. Our objective was to study innate responses induced early following IBV infection in chickens. Initiation of the transcription of selected innate immune genes such as TLR3, TLR7, MyD88, IL-1β and IFN-β, as well as recruitment of macrophages, were evident following an initial down regulation of some of the observed genes (TLR3, IL-1β, and IFN-γ) in trachea and lung. This initial down-regulation followed by the induction of innate immune response to IBV infection appears to be inadequate for the control of IBV genome accumulation and consequent histopathological changes in these tissues. Potential induction of innate immunity before infection occurs may be necessary to reduce the consequences since vaccine induced immunity is slow to develop

    Comparative full genome sequence analysis of wild-type and chicken embryo origin vaccine-like infectious laryngotracheitis virus field isolates from Canada

    Get PDF
    Infectious laryngotracheitis (ILT), caused by infectious laryngotracheitis virus (ILTV), occurs sporadically in poultry flocks in Canada. Live attenuated chicken embryo origin (CEO) vaccines are being used routinely to prevent and control ILTV infections. However, ILT outbreaks still occur since vaccine strains could revert to virulence in the field. In this study, 7 Canadian ILTV isolates linked to ILT outbreaks across different time in Eastern Canada (Ontario; ON and Quebec; QC) were whole genome sequenced. Phylogenetic analysis confirmed the close relationship between the ON isolates and the CEO vaccines, whereas the QC isolates clustered with strains previously known as CEO revertant and wild-type ILTVs. Recombination network analysis of ILTV sequences revealed clear evidence of historical recombination between ILTV strains circulating in Canada and other geographical regions. The comparison of ON CEO clustered and QC CEO revertant clustered isolates with the LT Blen® CEO vaccine reference sequence showed amino acid differences in 5 and 12 open reading frames (ORFs), respectively. Similar analysis revealed amino acid differences in 32 ORFs in QC wild-type isolates. Compared to all CEO vaccine strains in the public domain, the QC wild-type isolates showed 15 unique mutational sites leading to amino acid changes in 13 ORFs. Our outcomes add to the knowledge of the molecular mechanisms behind ILTV genetic variance and provide genetic markers between wild-type and vaccine strains

    Host responses are induced in feathers of chickens infected with Marek's disease virus

    Get PDF
    AbstractControl measures are ineffective in curtailing Marek's disease virus (MDV) infection and replication in the feather follicle epithelium (FFE). Therefore, vaccinated birds which subsequently become infected with MDV, shed the virulent virus although they remain protected against disease. The present study investigated host responses generated against MDV infection in the feather. We observed that in parallel with an increase in viral genome load and viral replication in the feather, there was a gradual but progressive increase in infiltration of CD4+ and CD8+ T cells into the feather pulp of MDV-infected chickens, starting on day 4 and peaking by day 10 post-infection. Concomitant with infiltration of T cells, the expression of interleukin (IL)-18, IL-6, interferon (IFN)-γ and major histocompatibility complex class I genes was significantly enhanced in the feather pulp of MDV-infected chickens. The finding that host responses are generated in the feather may be exploited for developing strategies to control MDV infection in the FFE, thus preventing horizontal virus transmission

    Host immune response modulation in avian coronavirus infection : tracheal transcriptome profiling in vitro and in vivo

    Get PDF
    Infectious bronchitis virus (IBV) is a highly contagious Gammacoronavirus causing moderate to severe respiratory infection in chickens. Understanding the initial antiviral response in the respiratory mucosa is crucial for controlling viral spread. We aimed to characterize the impact of IBV Delmarva (DMV)/1639 and IBV Massachusetts (Mass) 41 at the primary site of infection, namely, in chicken tracheal epithelial cells (cTECs) in vitro and the trachea in vivo. We hypothesized that some elements of the induced antiviral responses are distinct in both infection models. We inoculated cTECs and infected young specific pathogen-free (SPF) chickens with IBV DMV/1639 or IBV Mass41, along with mock-inoculated controls, and studied the transcriptome using RNA-sequencing (RNA-seq) at 3 and 18 h post-infection (hpi) for cTECs and at 4 and 11 days post-infection (dpi) in the trachea. We showed that IBV DMV/1639 and IBV Mass41 replicate in cTECs in vitro and the trachea in vivo, inducing host mRNA expression profiles that are strain- and time-dependent. We demonstrated the different gene expression patterns between in vitro and in vivo tracheal IBV infection. Ultimately, characterizing host–pathogen interactions with various IBV strains reveals potential mechanisms for inducing and modulating the immune response during IBV infection in the chicken trachea

    Chicken astrovirus (CAstV) molecular studies reveal evidence of multiple past recombination events in sequences originated from clinical samples of white chick syndrome (WCS) in Western Canada

    Get PDF
    In this study, we aimed to molecularly characterize 14 whole genome sequences of chicken astrovirus (CAstV) isolated from samples obtained from white chick syndrome (WCS) outbreaks in Western Canada during the period of 2014–2019. Genome sequence comparisons showed all these sequences correspond to the novel Biv group from which no confirmed representatives were published in GenBank. Molecular recombination analyses using recombination detection software (i.e., RDP5 and SimPlot) and phylogenetic analyses suggest multiple past recombination events in open reading frame (ORF)1a, ORF1b, and ORF2. Our findings suggest that recombination events and the accumulation of point mutations may have contributed to the substantial genetic variation observed in CAstV and evidenced by the current seven antigenic sub-clusters hitherto described. This is the first paper that describes recombination events in CAstV following analysis of complete CAstV sequences originated in Canada

    Polyacrylonitrile gel polymer electrolyte based dye sensitized solar cells for a prototype solar panel

    Get PDF
    Polyacrylonitrile (PAN) based gel polymer electrolytes (GPE) were prepared using lithium iodide (LiI), 1-butyl-3-methylimidazolium iodide (BMII) and tetrapropyl ammonium iodide (TPAI). The LiI mass fraction in the electrolyte was varied while keeping the masses of other components constant in order to enhance the solar cell performance. The addition of 4.61 wt.% LiI in the GPE increased the electrolyte room temperature ionic conductivity from (2.32 ± 0.02) to (3.91 ± 0.04) mS cm−1. The increase in conductivity with the addition of LiI salts was attributed to the increase in diffusion coefficient, mobility and number density of charge carriers as determined from Nyquist plot fitting. The incorporation of LiI salts in PAN-based GPE has enhanced the efficiency of the DSSC as expected. The best cell performance was obtained with an electrolyte containing 4.61 wt.% LiI sandwiched between a single mesoporous layer of TiO2 soaked in N3 dye sensitizer and a platinum counter electrode, which showed a power conversion efficiency (PCE) of (5.4 ± 0.1) % with a short circuit current density (Jsc) of (21.0 ± 1.1) mA cm−2, an open circuit voltage (Voc) of (0.48 ± 0.02) V and a fill factor (FF) of (53.4 ± 0.9) %. The DSSCs with 4.61 wt.% of LiI have been used to fabricate prototype solar panels for operating small devices. The panels were assembled using a number of cells, each having an area of 2 cm × 2 cm, connected in series and parallel. The panel, consisting of a set of eight cells in series which was connected in parallel with another set of eight cells in series, produces an average power conversion efficiency of (3.7 ± 0.2)% with a maximum output power of (17.1 ± 0.9) mW

    Analysis of whole-genome sequences of infectious laryngotracheitis virus isolates from poultry flocks in Canada : evidence of recombination

    Get PDF
    Infectious laryngotracheitis virus (ILTV) is a herpes virus that causes an acute respiratory disease of poultry known as infectious laryngotracheitis (ILT). Chicken embryo origin (CEO) and tissue culture origin (TCO) live attenuated vaccines are routinely used for the control of ILT. However, vaccine virus is known to revert to virulence, and it has been recently shown that ILT field viral strains can undergo recombination with vaccinal ILTV and such recombinant ILT viruses possess greater transmission and pathogenicity potential. Based on complete or partial genes of the ILTV genome, few studies genotyped ILTV strains circulating in Canada, and so far, information is scarce on whole-genome sequencing or the presence of recombination in Canadian ILTV isolates. The objective of this study was to genetically characterize the 14 ILTV isolates that originated from three provinces in Canada (Alberta, British Columbia and Quebec). To this end, a phylogenetic analysis of 50 ILTV complete genome sequences, including 14 sequences of Canadian origin, was carried out. Additional phylogenetic analysis of the unique long, unique short and inverted repeat regions of the ILTV genome was also performed. We observed that 71%, 21% and 7% of the ILTV isolates were categorized as CEO revertant, wild-type and TCO vaccine-related, respectively. The sequences were also analyzed for potential recombination events, which included evidence in the British Columbia ILTV isolate. This event involved two ILTV vaccine (CEO) strains as parental strains. Recombination analysis also identified that one ILTV isolate from Alberta as a potential parental strain for a United States origin ILTV isolate. The positions of the possible recombination breakpoints were identified. These results indicate that the ILTV wild-type strains can recombine with vaccinal strains complicating vaccine-mediated control of ILT. Further studies on the pathogenicity of these ILTV strains, including the recombinant ILTV isolate are currently ongoing
    corecore