4 research outputs found

    Binding characteristics study for dengue virus non-structural protein 1 of antigen and its antibody by using circular dichroism technique

    Get PDF
    This paper presents the binding characteristics study of dengue non-structural protein 1 (NS1) antigen and its antibody using circular dichroism technique in far UV region. Circular dichroism (CD) is a spectroscopic technique which measures differences in the absorption of left-handed and right handed circularly polarized light. The CD spectrum can determine conformation of the NS1 antigen and its antibody, conformational changes of the antigen-antibody interaction and estimates the secondary structure of these proteins in far UV region. Firstly, CD spectrum of individual solutions of the antigen and the antibody were measured. Then, the solutions were mixed to produce a solution of complex dengue NS1 antigen and its antibody for measurement. The findings show that the antibody has the highest positive band of CD intensity follow by the complex antigen-antibody and antigen. The antibody is a chiral structure, has high helical conformation and more ordered epitope structure. Meanwhile, the NS1 antigen shows the negative and the lowest CD spectrum. The antigen is low chirality and has more random-like conformation. The complex (binding of the antigen and antibody) has the CD spectrum's shape similar to the antibody but in lower intensity. So, it has helical and beta conformations lower than the antibody. The binding characteristics of the complex solutions were also studied with increased in incubation time and with varied rotation applied. It is found that the immunoreactions between the antigen and its antibody are rapid processes which do not require too long incubation time. Besides, the applied rotation can increased the immunoreaction process

    Performance of a Novel Low-Cost, Instrument-Free Plasma Separation Device for HIV Viral Load Quantification and Determination of Treatment Failure in People Living with HIV in Malaysia: a Diagnostic Accuracy Study

    Get PDF
    HIV viral load (VL) testing is the recommended method for monitoring the response of people living with HIV and receiving antiretroviral therapy (ART). The availability of standard plasma VL testing in low- and middle-income countries (LMICs), and access to this testing, are limited by the need to use fresh plasma. Good specimen collection methods for HIV VL testing that are applicable to resource-constrained settings are needed. We assessed the diagnostic performance of the filtered dried plasma spot (FDPS), created using the newly developed, instrument-free VLPlasma device, in identifying treatment failure at a VL threshold of 1,000 copies/ml in fresh plasma. Performance was compared with that of the conventional dried blood spot (DBS). Venous blood samples from 201 people living with HIV and attending an infectious disease clinic in Malaysia were collected, and HIV VL was quantified using fresh plasma (the reference standard), FDPS, and DBS specimens. VL testing was done using the Roche Cobas AmpliPrep/Cobas TaqMan v2.0 assay. At a threshold of 1,000 copies/ml, the diagnostic performance of the FDPS was superior (sensitivity, 100% [95% confidence interval {CI}, 89.1 to 100%]; specificity, 100% [95% CI, 97.8 to 100%]) to that of the DBS (sensitivity, 100% [95% CI, 89.4 to 100%]; specificity, 36.8% [95% CI, 29.4 to 44.7%]) (P 0.001). A stronger correlation was observed between the FDPS VL and the plasma VL (r 0.94; P 0.001) than between the DBS VL and the plasma VL (r 0.85; P 0.001). The mean difference in VL measures between the FDPS and plasma (plasma VL minus FDPS VL) was 0.127 log10 copies/ml (standard deviation [SD], 0.32), in contrast to – 0.95 log10 copies/ml (SD, 0.84) between the DBS and plasma. HIV VL measurement using the FDPS outperformed that with the DBS in identifying treatment failure at a threshold of 1,000 copies/ml and compared well with the quantification of VL in plasma. The FDPS can be an attractive alternative to fresh plasma for improving access to HIV VL monitoring among people living with HIV on ART in LMICs

    Development of a reverse transcription recombinase polymerase amplification assay for rapid and direct visual detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).

    No full text
    Rapid diagnosis is an important intervention in managing the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) outbreak. Real time reverse transcription polymerase chain reaction (RT-qPCR) remains the primary means for diagnosing the new virus strain but it is time consuming and costly. Recombinase polymerase amplification (RPA) is an isothermal amplification assay that does not require a PCR machine. It is an affordable, rapid, and simple assay. In this study, we developed and optimized a sensitive reverse transcription (RT)-RPA assay for the rapid detection of SARS-CoV-2 using SYBR Green I and/or lateral flow (LF) strip. The analytical sensitivity and specificity of the RT-RPA assay were tested by using 10-fold serial diluted synthetic RNA and genomic RNA of similar viruses, respectively. Clinical sensitivity and specificity of the RT-RPA assay were carried out using 78 positive and 35 negative nasopharyngeal samples. The detection limit of both RPA and RT-qPCR assays was 7.659 and 5 copies/μL RNA, respectively with no cross reactivity with other viruses. The clinical sensitivity and specificity of RT-RPA were 98% and 100%, respectively. Our study showed that RT-RPA represents a viable alternative to RT-qPCR for the detection of SARS-CoV-2, especially in areas with limited infrastructure

    Push pull microfluidics on a multi-level 3D CD

    Get PDF
    A technique known as thermo-pneumatic (TP) pumping is used to pump fluids on a microfluidic compact disc (CD) back towards the CD center against the centrifugal force that pushes liquids from the center to the perimeter of the disc. Trapped air expands in a TP air chamber during heating, and this creates positive pressure on liquids located in chambers connected to that chamber. While the TP air chamber and connecting channels are easy to fabricate in a one-level CD manufacturing technique, this approach provides only one way pumping between two chambers, is real-estate hungry and leads to unnecessary heating of liquids in close proximity to the TP chamber. In this paper, we present a novel TP push and pull pumping method which allows for pumping of liquid in any direction between two connected liquid chambers. To ensure that implementation of TP push and pull pumping also addresses the issue of space and heating challenges, a multi-level 3D CD design is developed, and localized forced convection heating, rather than infra-red (IR) is applied. On a multi-level 3D CD, the TP features are placed on a top level separate from the rest of the microfluidic processes that are implemented on a lower separate level. This approach allows for heat shielding of the microfluidic process level, and efficient usage of space on the CD for centrifugal handling of liquids. The use of localized forced convection heating, rather than infra-red (IR) or laser heating in earlier implementations allows not only for TP pumping of liquids while the CD is spinning but also makes heat insulation for TP pumping and other fluidic functions easier. To aid in future implementations of TP push and pull pumping on a multi-level 3D CD, study on CD surface heating is also presented. In this contribution, we also demonstrate an advanced application of pull pumping through the implementation of valve-less switch pumping.close4
    corecore