145 research outputs found
The enhanced naturally occurring radioactivity of negative ion clothing and attendant risk
The study investigates commercially available negative ion clothing, and evaluations are made using gamma-ray spectroscopy and Geant4 Monte Carlo simulations. Observed to contain naturally occurring radioactive material (NORM), evaluations are made of the radiological risk arising from the use of these as items of everyday wear, undergarments in particular. Organ doses from these were simulated using the MIRD5 mathematical female phantom, with the incorporation of dose conversion factors (DCFs). At 175 ± 26, 1732 ± 247, and 207 ± 38 Bq, for238U,232Th, and40K respectively, item code S05 was found to possess the greatest activity, while item code S07 was shown to have the least activity, at 2 ± 0.5 and 15 ± 2 Bq, and again for238U and232Th, respectively. Sample code S11 recorded least activity, at 29 ± 5 Bq, for40K. Among the clothing items, sample item code S05 offered the greatest concentrations of Th, U and Zr, with percentage means of 1.23 ± 0.1, 0.045 ± 0.001, and 1.29 ± 0.1, respectively, giving rise to an annual effective dose of 1.57 mSv/y assuming a nominal wearing period of 24 h per day. Accordingly, the annual public dose limit of 1 mSv can be exceeded by their use
Performance Analysis of Neural Network Model for Automated Visual Inspection with Robotic Arm Controller System
The concept of Automated Visual Inspection (AVI) have emerged as a powerful platform for industrial machine vision where it used to inspect a large number of products rapidly. However, a major problem with this kind of application is the quality produced by the recognition process. In this paper, a system with the capability of identifying and categorizing a product based on image processing has been implemented. The image was processed by using Radial Basis Function (RBF) based on output center and spread values optimization. Robotic arm controller developed for pick and place the product based on their categories. Two performance measures are used to validate the model classification range and the spread values. The results of this project indicate that the model used able to identify the product and classify it according to their shape
Predictors of Medication Adherence and Blood Pressure Control among Saudi Hypertensive Patients Attending Primary Care Clinics: A Cross-Sectional Study
Purpose To assess the level of medication adherence and to investigate predictors of medication adherence and blood pressure control among hypertensive patients attending primary healthcare clinics in Makkah, Saudi Arabia. Patients and methods Hypertensive patients meeting the eligibility criteria were recruited from eight primary care clinics between January and May 2016 for this study. The patients completed Arabic version of Morisky Medication Adherence Scale (MMAS-8), an eight-item validated, self-reported measure to assess medication adherence. A structured data collection form was used to record patients’ sociodemographic, medical and medication data. Results Two hundred and four patients, of which 71.6% were females, participated in the study. Patients’ mean age was 59.1 (SD 12.2). The mean number of medication used by patients was 4.4 (SD 1.89). More than half (110; 54%) of the patients were non-adherent to their medications (MMAS score 65 years (OR 2.0 [95% CI: 1.0–4.2; P = 0.04]), and being diabetic (OR 0.25 [95% CI: 0.1–0.6; P = 0.04]) were found to be independent predictors of medication adherence. Conclusion Medication adherence is alarmingly low among hypertensive patients attending primary care clinics in Saudi Arabia which may partly explain observed poor blood pressure control. There is a clear need to educate patients about the importance of medication adherence and its impact on improving clinical outcomes. Future research should identify barriers to medication adherence among Saudi hypertensive patients
Immune Imprinting and Protection against Repeat Reinfection with SARS-CoV-2
More than 2 years into the coronavirus disease 2019 (Covid-19) pandemic, the global population carries heterogeneous immune histories derived from various exposures to infection, viral variants, and vaccination.1 Evidence at the level of binding and neutralizing antibodies and B-cell and T-cell immunity suggests that a history of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can have a negative effect on subsequent protective immunity.1 In particular, the immune response to B.1.1.529 (omicron) subvariants could be compromised by differential immune imprinting in persons who have had a previous infection with the original virus or the B.1.1.7 (alpha) variant.
Waning of BNT162b2 Vaccine Protection against SARS-CoV-2 Infection in Qatar.
BACKGROUND: Waning of vaccine protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or coronavirus disease 2019 (Covid-19) is a concern. The persistence of BNT162b2 (Pfizer-BioNTech) vaccine effectiveness against infection and disease in Qatar, where the B.1.351 (or beta) and B.1.617.2 (or delta) variants have dominated incidence and polymerase-chain-reaction testing is done on a mass scale, is unclear. METHODS: We used a matched test-negative, case-control study design to estimate vaccine effectiveness against any SARS-CoV-2 infection and against any severe, critical, or fatal case of Covid-19, from January 1 to September 5, 2021. RESULTS: Estimated BNT162b2 effectiveness against any SARS-CoV-2 infection was negligible in the first 2 weeks after the first dose. It increased to 36.8% (95% confidence interval [CI], 33.2 to 40.2) in the third week after the first dose and reached its peak at 77.5% (95% CI, 76.4 to 78.6) in the first month after the second dose. Effectiveness declined gradually thereafter, with the decline accelerating after the fourth month to reach approximately 20% in months 5 through 7 after the second dose. Effectiveness against symptomatic infection was higher than effectiveness against asymptomatic infection but waned similarly. Variant-specific effectiveness waned in the same pattern. Effectiveness against any severe, critical, or fatal case of Covid-19 increased rapidly to 66.1% (95% CI, 56.8 to 73.5) by the third week after the first dose and reached 96% or higher in the first 2 months after the second dose; effectiveness persisted at approximately this level for 6 months. CONCLUSIONS: BNT162b2-induced protection against SARS-CoV-2 infection appeared to wane rapidly following its peak after the second dose, but protection against hospitalization and death persisted at a robust level for 6 months after the second dose. (Funded by Weill Cornell Medicine-Qatar and others.)
Protection against the omicron variant from previous SARS-CoV-2 infection
Natural infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) elicits strong protection against reinfection with the B.1.1.7 (alpha),1,2 B.1.351 (beta),1 and B.1.617.2 (delta)3 variants. However, the B.1.1.529 (omicron) variant harbors multiple mutations that can mediate immune evasion. We estimated the effectiveness of previous infection in preventing symptomatic new cases caused by omicron and other SARS-CoV-2 variants in Qatar. In this study, we extracted data regarding coronavirus disease 2019 (Covid-19) laboratory testing, vaccination, clinical infection data, and related demographic details from the national SARS-CoV-2 databases, which include all results of polymerase-chain-reaction (PCR) testing, vaccinations, and hospitalizations and deaths for Covid-19 in Qatar since the start of the pandemic
Are commercial antibody assays substantially underestimating SARS-CoV-2 ever infection? An analysis on a population-based sample in a high exposure setting
AbstractBackgroundPerformance of three automated commercial serological IgG-based assays was investigated for assessing SARS-CoV-2 ever (past or current) infection in a population-based sample in a high exposure setting.MethodsPCR and serological testing was performed on 394 individuals.ResultsSARS-CoV-2-IgG seroprevalence was 42.9% (95% CI 38.1%-47.8%), 40.6% (95% CI 35.9%-45.5%), and 42.4% (95% CI 37.6%-47.3%) using the CL-900i, VidasIII, and Elecsys assays, respectively. Between the three assays, overall, positive, and negative percent agreements ranged between 93.2%-95.7%, 89.3%-92.8%, and 93.8%-97.8%, respectively; Cohen kappa statistic ranged from 0.86-0.91; and 35 specimens (8.9%) showed discordant results. Among all individuals, 12.5% (95% CI 9.6%-16.1%) had current infection, as assessed by PCR. Of these, only 34.7% (95% CI 22.9%-48.7%) were seropositive by at least one assay. A total of 216 individuals (54.8%; 95% CI 49.9%-59.7%) had evidence of ever infection using antibody testing and/or PCR during or prior to this study. Of these, only 78.2%, 74.1%, and 77.3% were seropositive in the CL-900i, VidasIII, and Elecsys assays, respectively.ConclusionsAll three assays had comparable performance and excellent agreement, but missed at least 20% of individuals with past or current infection. Commercial antibody assays can substantially underestimate ever infection, more so when infection rates are high.</jats:sec
Protection of Omicron sub-lineage infection against reinfection with another Omicron sub-lineage
There is significant genetic distance between SARS-CoV-2 Omicron (B.1.1.529) variant BA.1 and BA.2 sub-lineages. This study investigates immune protection of infection with one sub-lineage against reinfection with the other sub-lineage in Qatar during a large BA.1 and BA.2 Omicron wave, from December 19, 2021 to March 21, 2022. Two national matched, retrospective cohort studies are conducted to estimate effectiveness of BA.1 infection against reinfection with BA.2 (N = 20,994; BA.1-against-BA.2 study), and effectiveness of BA.2 infection against reinfection with BA.1 (N = 110,315; BA.2-against-BA.1 study). Associations are estimated using Cox proportional-hazards regression models after multiple imputation to assign a sub-lineage status for cases with no sub-lineage status (using probabilities based on the test date). Effectiveness of BA.1 infection against reinfection with BA.2 is estimated at 94.2% (95% CI: 89.2–96.9%). Effectiveness of BA.2 infection against reinfection with BA.1 is estimated at 80.9% (95% CI: 73.1–86.4%). Infection with the BA.1 sub-lineage appears to induce strong, but not full immune protection against reinfection with the BA.2 sub-lineage, and vice versa, for at least several weeks after the initial infection
Bivalent mRNA-1273.214 vaccine effectiveness against SARS-CoV-2 omicron XBB* infections
In October of 2022, Qatar introduced COVID-19 bivalent vaccination for persons ≥ 12 years using the 50-μg mRNA-1273.214 vaccine combining SARS-CoV-2 ancestral and omicron BA.1 strains.1 We estimated this vaccine’s effectiveness against SARS-CoV-2 infection.
Using Qatar’s national SARS-CoV-2 databases, we conducted a matched, retrospective, cohort study to compare infection incidence in the national cohort of persons who received the vaccine (bivalent cohort) to that in the national cohort of Qatar residents whose last vaccination was ≥6 months before follow-up start (no-recent-vaccination cohort; Supplementary Appendix 1). The 6-month cut-off was chosen because of negligible effectiveness of first-generation vaccines against omicron infection ≥ 6 months after vaccination.2
Incidence of infection was defined as the first SARS-CoV-2 PCR-positive or rapid-antigen-positive test after the start of follow-up, regardless of symptoms. Cohorts were balanced on observed confounders through exact matching. Follow-up started 7 days after the person in the bivalent cohort received their vaccine dose. Associations were estimated using Cox proportional-hazards models adjusted for the matching factors and testing rate
- …