13 research outputs found

    Reversal of age-associated cognitive deficits is accompanied by increased plasticity-related gene expression after chronic antidepressant administration in middle-aged mice

    Get PDF
    AbstractCognitive decline occurs during healthy aging, even in middle-aged subjects, via mechanisms that could include reduced stem cell proliferation, changed growth factor expression and/or reduced expression of synaptic plasticity genes. Although antidepressants alter these mechanisms in young rodents, their effects in older animals are unclear. In middle-aged mice, we examined the effects of a selective serotonin reuptake inhibitor (fluoxetine) and a multimodal antidepressant (vortioxetine) on cognitive and affective behaviors, brain stem cell proliferation, growth factor and gene expression. Twelve-month-old female C57BL/6 mice exhibited impaired visuospatial memory in the novel object placement (location) task associated with reduced expression of several plasticity-related genes. Chronic treatment with vortioxetine, but not fluoxetine, improved visuospatial memory and reduced depression-like behavior in the forced swim test in middle-aged mice. Vortioxetine, but not fluoxetine, increased hippocampal expression of several neuroplasticity-related genes in middle-aged mice (e.g., Nfkb1, Fos, Fmr1, Camk2a, Arc, Shank1, Nlgn2, and Rab3a). Neither drug reversed the age-associated decrease in stem cell proliferation. Hippocampal growth factor levels were not consistent with behavioral outcomes. Thus, a change in the expression of multiple genes involved in neuronal plasticity by antidepressant treatment was associated with improved cognitive function and a reduction in depression-like behavior in middle-aged mice

    Neuroplasticity pathways and protein-interaction networks are modulated by vortioxetine in rodents

    Get PDF
    Additional file 2: Figure S1. Merged mouse and rat network (mapped to human proteins) and summary of biological functions of each sub-network. Biological functions were manually extracted from the Function and Gene Ontology fields of the UniProt protein entries. The genes with dark, bold borders were used to build the network of protein–protein interaction partners. Squares with bold borders represent upregulated targets from the rat network, and circles with bold borders indicate differentially-regulated targets from the mouse network. The arrowheads indicate the common targets found in mouse and rat networks. This network of physically-interacting proteins containing clusters related to synaptic plasticity, synaptic transmission, neurodevelopment, cell growth, metabolism, and apoptosis, was significantly modulated in both mouse and rat

    A classifier driven approach to find biomarkers for affective disorders from transcription profiles in blood

    Get PDF
    Gene expression profiles in blood are increasingly being used to identify biomarkers for different affective disorders. We have selected a set of 29 genes to generate expression profiles for healthy control subjects as well as for patients diagnosed with acute post-traumatic stress disorder (PTSD) and with borderline personality disorder (BPD). Measurements were performed by quantitative polymerase chain reaction (qPCR). Using the actual data in an anonym-ous form we constructed a series of artificial data sets with known gene expression profiles. These sets were used to test 14 classification algorithms and feature selection methods for their ability to identify the correct expression patterns. Application of the three most effective algorithms to the actual expression data showed that control subjects can be dis-tinguished from BPD patients based on differential expression levels of the gene transcripts Gi2, GR and MAPK14, targets that may have links to stress related diseases. Controls can also be distinguished from acute PTSD patients by differential expression levels of the transcripts for ERK2 and RGS2 that are known to be associated with mood disord-ers and social anxiety. We conclude that it is possible to identify informative transcription profiles in blood samples from individuals with affective disorders

    Chronic Vortioxetine Treatment in Rodents Modulates Gene Expression of Neurodevelopmental and Plasticity Markers

    No full text
    The multimodal antidepressant vortioxetine displays an antidepressant profile distinct from those of conventional selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) and possesses cognitive-enhancing properties in preclinical and clinical studies. Recent studies have begun to investigate molecular mechanisms that may differentiate vortioxetine from other antidepressants. Acute studies in adult rats and chronic studies in a middle-aged mouse model reveal upregulation of several markers that play a central role in synaptic plasticity. However, the effect of chronic vortioxetine treatment on expression of neuroplasticity and neurodevelopmental biomarkers in naïve rats has not been evaluated. In the present study, we demonstrate that vortioxetine at a range of doses regulates expression of genes associated with plasticity in the frontal cortex, hippocampus, region encompassing the amygdala, as well as in blood, and displays similar effects relative to the SSRI fluoxetine in adult naïve rats. These genes encode immediate early genes (IEGs), translational regulators, and the neurodevelopmental marker Sema4g. Similar findings detected in brain regions and in blood provide a potential translational impact, and vortioxetine appears to consistently regulate signaling in these networks of neuroplasticity and developmental markers

    Gene Expression Profiles in Relation to Tension and Dissociation in Borderline Personality Disorder

    No full text
    <div><p>The biological underpinnings of borderline personality disorder (BPD) and its psychopathology including states of aversive tension and dissociation is poorly understood. Our goal was to examine transcriptional changes associated with states of tension or dissociation within individual patients in a pilot study. Dissociation is not only a critical symptom of BPD but has also been associated with higher risk for self-mutilation and depression. We conducted a whole blood gene expression profile analysis using quantitative PCR in 31 female inpatients with BPD. For each individual, two samples were drawn during a state of high tension and dissociation, while two samples were drawn at non-tension states. There was no association between gene expression and tension states. However, we could show that Interleukin-6 was positively correlated to dissociation scores, whereas Guanine nucleotide-binding protein G(s) subunit alpha isoforms, Mitogen-activated protein kinase 3 and 8, Guanine nucleotide-binding protein G(i) subunit alpha-2, Beta-arrestin-1 and 2, and Cyclic AMP-responsive element-binding protein were negatively correlated to dissociation. Our data point to a potential association of dissociation levels with the expression of genes involved in immune system regulation as well as cellular signalling/second-messenger systems. Major limitations of the study are the the possibly heterogeneous cell proportions in whole blood and the heterogeneous medication.</p></div

    DSS total scores and tension sub-scores for tension and non-tension state.

    No full text
    <p>Scores are averages over the two observations in each state. The dashed line represents the patients and the two states of each patient.</p

    In Vivo and In Vitro Effects of Vortioxetine On Molecules Associated with Neuroplasticity

    No full text
    Neuroplasticity is fundamental for brain functions, abnormal changes of which are associated with mood disorders and cognitive impairment. Neuroplasticity can be affected by neuroactive medications and by aging. Vortioxetine, a multimodal antidepressant, has shown positive effects on cognitive functions in both pre-clinical and clinical studies. In rodent studies, vortioxetine increases glutamate neurotransmission, promotes dendritic branching and spine maturation, and elevates hippocampal expression of the activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) at the transcript level. The present study aims to assess the effects of vortioxetine on several neuroplasticity-related molecules in different experimental systems. Chronic (1 month) vortioxetine increased Arc/Arg3.1 protein levels in the cortical synaptosomes of young and middle-aged mice. In young mice, this was accompanied by an increase in actin-depolymerizing factor (ADF)/cofilin serine 3 phosphorylation without altering the total ADF/cofilin protein level, and an increase in the GluA1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor phosphorylation at serine 845 (S845) without altering serine 831 (S831) GluA1 phosphorylation nor the total GluA1 protein level. Similar effects were detected in cultured rat hippocampal neurons: Acute vortioxetine increased S845 GluA1 phosphorylation without changing S831 GluA1 phosphorylation or the total GluA1 protein level. These changes were accompanied by an increase in α subunit of Ca2+/calmodulin-dependent kinase (CaMKIIα) phosphorylation (at threonine 286) without changing the total CaMKIIα protein level in cultured neurons. In addition, chronic (1 month) vortioxetine, but not fluoxetine, restored the age-associated reduction in Arc/Arg3.1 and c-Fos transcripts in the frontal cortex of middle-aged mice. Taken together, these results demonstrated that vortioxetine modulates molecular targets that are related to neuroplasticity

    Bilateral renal lipomatosis: A case report

    No full text
    Renal replacement lipomatosis is a rare condition characterized by fatty tissue proliferation. It has been associated with aging, lithiasis disease, and renal transplantation. The clinical presentation is non-specific, and imaging is essential to confirm and make the differential diagnosis. We report a case of a patient followed for endometrial thickening or the diagnosis of renal lipomatosis that was discovered incidentally on an abdominopelvic CT scan
    corecore