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Cognitive decline occurs during healthy aging, even in middle-aged subjects, viamechanisms that could include
reduced stem cell proliferation, changed growth factor expression and/or reduced expression of synaptic plastic-
ity genes. Although antidepressants alter these mechanisms in young rodents, their effects in older animals are
unclear. In middle-aged mice, we examined the effects of a selective serotonin reuptake inhibitor (fluoxetine)
and a multimodal antidepressant (vortioxetine) on cognitive and affective behaviors, brain stem cell prolifera-
tion, growth factor and gene expression. Twelve-month-old female C57BL/6 mice exhibited impaired visuospa-
tial memory in the novel object placement (location) task associated with reduced expression of several
plasticity-related genes. Chronic treatment with vortioxetine, but not fluoxetine, improved visuospatial memory
and reduced depression-like behavior in the forced swim test in middle-aged mice. Vortioxetine, but not fluox-
etine, increased hippocampal expression of several neuroplasticity-related genes in middle-aged mice (e.g.,
Nfkb1, Fos, Fmr1, Camk2a, Arc, Shank1, Nlgn2, and Rab3a). Neither drug reversed the age-associated decrease
in stem cell proliferation. Hippocampal growth factor levels were not consistent with behavioral outcomes.
Thus, a change in the expression of multiple genes involved in neuronal plasticity by antidepressant treatment
was associated with improved cognitive function and a reduction in depression-like behavior in middle-aged
mice.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Although severe cognitive deficits notably occur in dementia and
neurodegenerative diseases, mild cognitive deficits are also prevalent
in otherwise healthy older subjects in both humans and in rodent
models (Aenlle et al., 2009; Dumas et al., 2013; Ennaceur et al., 2008;
Gautam et al., 2011; Gunstad et al., 2006; Salthouse, 2010). Thus, in
the following we focus on the physiology of age-related cognitive
changes in otherwise healthy middle-aged subjects as such studies
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may elucidate early changes in mechanisms of age-related cognitive
deficits.

Several mechanisms have been proposed to explain age-related
decline in cognitive performance, including decreased neurogenesis, re-
duced growth factor levels and synaptic plasticity, and morphological
changes. Decreased neurogenesis in old and middle-aged subjects
(Ben Abdallah et al., 2010; Kuhn et al., 1996; Spalding et al., 2013) is pri-
marily due to decreased precursor cell (stem cell) proliferation (Olariu
et al., 2007) and may be associated with deficits in hippocampal-
mediated tasks (Clelland et al., 2009). Age-related changes in the levels
of neurotrophic factors have also been shown in middle-aged rodents
(Bimonte-Nelson et al., 2008; Hattiangady et al., 2005; Shetty et al.,
2005). Decreased plasticity in middle-aged and aged rodents (Kumar,
2011; Rex et al., 2005) may also play a role in cognitive impairment
(Balietti et al., 2012). In this context, it is interesting that antidepres-
sants, which have been shown to have pro-cognitive effects in some an-
imal models (Elizalde et al., 2008; Schilstrom et al., 2011), also alter
stem cell proliferation (Ibi et al., 2008), growth factor expression
(Song et al., 2006) and neuroplasticity-related gene expression
(Djordjevic et al., 2012; Freitas et al., 2013), which could underlie the
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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effects of antidepressants on cognitive function as well as mood. This is
of particular importance as even sub-threshold depressive symptoms
negatively impact cognitive functions in middle-aged and old subjects
(Brevik et al., 2013).

Both selective serotonin reuptake inhibitors (SSRIs) and vortioxetine
(1-[2-(2,4-dimethylphenylsulfanyl)-phenyl]piperazine) are antide-
pressants that may improve cognitive function (Biringer et al., 2009;
Egashira et al., 2006; ElBeltagy et al., 2010; Mork et al., 2013; Wallace
et al., 2014) and increase stem cell proliferation in young adult rodents
(Guilloux et al., 2013; Ohira et al., 2013), but their effects in older ani-
mals have not been well studied. In addition, SSRIs and vortioxetine
have different mechanisms of action. Vortioxetine is a multimodal anti-
depressant that inhibits the serotonin transporter (SERT), and is also an
antagonist for 5-HT1D, 5-HT3, and 5-HT7 receptors, a partial agonist for
5-HT1B receptors and an agonist for 5-HT1A receptors (Bang-Andersen
et al., 2011). In clinical studies, vortioxetine improves cognitive perfor-
mance in adults (McIntyre et al., 2014) as well as elderly patients with
depression (Katona et al., 2012), even though this population tends to
be less responsive to the effects of SSRIs (Tedeschini et al., 2011).
Thus, it is of interest to examine the effects of both agents in middle-
aged mice.

In the current study, we first characterized deficits in a battery of
behavioral tests in healthy middle-aged (12 month) and young
(3month)mice.We then assessed the behavioral effects of vortioxetine
and fluoxetine in the middle-aged mice. To elucidate the underlying
mechanisms of the observed differences, we also examined age- and
drug-induced effects on hippocampal cell proliferation, growth factor
levels and expression of plasticity-related genes in relevant brain
regions.

2. Materials and methods

2.1. Animals

Female C57BL/6 mice of different ages (40 young — 3 months and
120 middle-aged — 11 months) were acquired from Charles River
(Wilmington, MA), and group housed (2 per cage). Animals were kept
under a 12:12 light:dark cycle (lights on 6 am, lights off 6 pm) with ad
libitum access to water and food. All animal experiments were conduct-
ed in accordance to the Guide for the Care and Use of Laboratory
Animals as adopted and promulgated by the U.S. National Institutes of
Health, and approved by the Institutional Animal Care and Use Commit-
tee of Lundbeck Research USA.

2.2. Experimental design

Eleven-month-old mice were randomly divided into three groups
(40 mice per treatment group) and received 1 month of vortioxetine,
fluoxetine or vehicle treatment. The vortioxetine group mice were fed
with Purina 5001 rodent chow containing vortioxetine (synthesized
by H. Lundbeck A/S, Valby, Denmark) at a concentration of 600 mg
base per kg food (Research Diets Inc., New Brunswick, NJ) and drank
plain tap water. The fluoxetine group mice were fed with Purina 5001
rodent chow and drank fluoxetine in tap water (synthesized by H.
Lundbeck A/S, Valby, Denmark) at a concentration of 143 mg base per
liter. The vehicle group was fed with Purina 5001 rodent chow and
drank plain tap water. Drug concentrations of both fluoxetine and
vortioxetine were chosen to reach therapeutic dose range based on
brain SERT occupancy results from previous studies (Li et al., 2013)
and confirmed with ex vivo radio-autography analysis. Body weights
were also monitored to confirm no gross changes in animal's feeding
behavior. At 12 months of age, 20 mice of each treatment group
underwent behavioral tests. Four behaviorally tested 12 month old
mice from each drug treated group were used in ex vivo radio-
autography measurement of SERT occupancy, to confirm sufficient
drug exposure. Remaining behavioral test-naive animals were used for
BrdU uptake assay, qPCR and various growth factor quantifications.
Similar numbers of young mice (3 months old) were included as
controls. Detailed sample sizes are described in the Results section and
figure legends.

2.3. Behavioral tests

Behavioral tests were conducted in the following order: open field,
novel object placement, novel object recognition, social preference
and forced swim test. Animals received one test per day, with at least
one day between tests. Animals were brought into the laboratory for
acclimatization at least 30 min prior to behavioral testing. All tests
were conducted under low levels of incandescent lighting between
9 am and 5 pm.

2.3.1. Open field test (OF)
Animals were allowed to freely explore a testing arena (50 cm ×

50 cm× 35 cm) for 6min and their activity was analyzed using track-
ing software (Viewer, Biobserve, Bonn, Germany). General locomo-
tor activity was assessed as total track length and anxiety-like
behavior as the proportion of activity occurring in the center of the
arena (% center activity = 100 × center track length / total track
length).

2.3.2. Novel object placement (OP)
Visuospatial memory was examined using a novel object placement

test (a.k.a. novel object location test, place recognition test, or spatial
novelty test) (Ennaceur and Meliani, 1992; Yassine et al., 2013). Briefly,
micewere first allowed to explore in an open field containing two iden-
tical objects (with high contrast intra-arena visual cues) for 3min (Trial
1— training trial). The amount of object exploration (defined as rearing
on, whisking, sniffing or touching the objects with nose and/or
forepaws) was scored manually using stopwatches. After a retention
interval of 45min, micewere returned to the same testing arena for an-
other 3min (Trial 2— testing trial), with one objectmoved to a different
location. Exploration of each object was again manually scored. Results
of the object placement test were reported as novel object placement
preference scores (100% × exploration during testing trialrelocated object /
total object exploration during testing trial). Animals with intact visuo-
spatial memory preferentially explore the relocated (novel) object and
thus would have a preference score N50%. The results of the object
placement test were also reported as the proportion of animals failing
and passing, with passing defined as preference score N55%. Criteria
for establishing a pass/fail cutoff are detailed and justified elsewhere
(Li et al., 2010). Briefly, several factors were taken into consideration:
individual variability when animals repeat a task, within- and
between-cohort performance stability andmeasurement error. In addi-
tion, typically very few subjects have preference scores between 53%
and 55% and thus changing the criteria within this range does not sub-
stantively alter the results. Total novel object exploration (s) during
Trial 1 is also illustrated as an internal control. Track length was mea-
sured by Viewer tracking software (Biobserve, Bonn, Germany).

2.3.3. Novel object recognition (OR)
Recognition memory was assessed using the novel object recogni-

tion test (Dere et al., 2007; Ennaceur and Delacour, 1988). Briefly,
mice were allowed to explore two identical objects in the testing
arena for 3 min (Trial 1 — training trial). After a retention interval of
2 h, mice were returned to the arena for another 3 min, with one of
the familiar objects now replaced by a novel object (Trial 2 — testing
trial). The amount of exploration was scored manually. As in the object
placement test, the performance was evaluated by preference score
(100% × exploration during testing trialnovel object / total testing trial
object exploration) as well as pass/fail (using preference score N55%
as the criterion).
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2.3.4. Social preference (SP)
Social withdrawal was measured in a social preference test

(Crawley, 2004). Briefly, mice were allowed to explore a 3-chambered
testing arena containing either a stimulus conspecific animal (ovariec-
tomized female) in a wire mesh cage or a similar sized inanimate object
in an identical cage for 10 min. The amount of time each animal spent
exploring (defined as rearing on, whisking, sniffing or touching the
mesh enclosure with nose and/or forepaws) the stimulus animal or
the object was scored manually and is expressed as a social preference
score (100% × explorationstimulus animal / total exploration).

2.3.5. Forced swim test (FS)
Depression-like behavior was assessed by a modified forced swim

test (Porsolt et al., 1977). Briefly, mice were put in plexiglass cylinders
(20 cm in diameter) filledwith 25 °Cwater (30 cm deep) for 4min. Im-
mobility was manually scored using stopwatches, excluding the first
minute of the trial. Immobility was defined as no movement other
than that necessary to keep the animal's head above water. Results
are presented as % immobility: 100% × immobile period (s)/180. The
immobility in the forced swim test has been extensively validated as a
measure of depression-like behavior. Firstly, it is sensitive to and pre-
dictive of the success of antidepressants (Cooper et al., 1980; Dulawa
et al., 2004; Harkin et al., 1999; Karpa et al., 2002; Kusmider et al.,
2006; Porsolt et al., 1978;Willner, 1995). Secondly,many of the circum-
stances thought to promote depression in humans also induce behav-
ioral ‘despair’ in the forced swim test (Boccia et al., 2007; Bulduk and
Canbeyli, 2004; Friedman et al., 2006; Hoshaw et al., 2006; Hwang
et al., 1999; Lee et al., 2007; Pare, 1992; Ruedi-Bettschen et al., 2006;
Wann et al., 2007; Willner, 1995; Willner and Mitchell, 2002). Lastly,
Table 1
Hippocampal gene expression levels were reduced inmiddle-agedmice.Hippocampal gene
↓: significant reduction.

Gene Protein Function

Transcription and translation factors
Nfkb1a Nuclear factor NF-κB p105 subunit Part of NF-κB tr
Fosa (c-Fos) FBJ murine osteosarcoma viral oncogene homolog Part of transcrip
Fmr1a Fragile X mental retardation protein Transport mRN
Creb1 cAMP responsive element binding protein 1 Phosphorylation

Signal transduction
Ntrk2 (TrkB) Neurotrophic tyrosine receptor kinase Receptor for ne

neurotrophin-3
Camk2aa Calcium/calmodulin-dependent protein kinase II α Serine/threonin

long-term poten
Prkca Protein kinase C-α Serine/threonin

pathway
Jak2 Janus kinase 2 Tyrosine kinase
Gsk3b Glycogen synthase kinase 3β Serine/threonin

pathway

Synaptic plasticity
Arca Activity-regulated cytoskeleton-associated

protein
Required for syn

Shank1a SH3 and multiple ankyrin repeat domains 1 Adapter protein
synapses

Nlgn2a Neuroligin 2 Cell adhesion m
Homer1 Homer protein homolog 1 Postsynaptic de
Ncam1 Neural cell adhesion molecule 1 Cell adhesion m
Dlg4 (Psd-95) Postsynaptic density protein 95 Postsynaptic de

Neurotransmission
Syp Synaptophysin Small synaptic v
Scg3 Secretogranin-3 Protein located
Snap25 Synaptosomal-associated protein 25 Docking of synap

membrane
Vamp1 Vesicle-associated membrane protein 1,

Synaptobrevin 1
Docking of synap
membrane

Htr1d Serotonin receptor 1D G-protein (Gi/G
Grin1 (Nmdar1) Glutamate Receptor Ionotropic, NMDA 1 Ligand-gated ca

a Indicates gene expression levels also changed by antidepressant treatment. For the full list
the physiological responses, the brain regions and underlying mecha-
nisms regulating immobility in the forced swim test behavior are simi-
lar to findings in depressed humans (Arletti and Bertolini, 1987; Flugy
et al., 1992; Gil et al., 1992; Hattori et al., 2007; Hwang et al., 1999;
Jesberger and Richardson, 1985; Kostowski, 1985; Kostowski et al.,
1984; McKinney, 1984; Overstreet, 1986; Pare, 1989, 1992; Porsolt,
1979; Porsolt et al., 1979; White et al., 2007; Willner, 1984, 1995) and
to other animal assays of depression (Gil et al., 1992; Kostowski et al.,
1992; Pare, 1994; Willner, 1995).

2.4. Quantitative PCR (qPCR)

Dissected hippocampal tissues were stored in Ambion RNAlater®

reagent (Life Technologies, Grand Island, NY) at −20 °C until analysis.
RNA was isolated from hippocampal homogenates using an Ambion
RNAqueous kit (Life Technologies) and mRNA was enriched by remov-
ing genomic DNA with a DNase digestion step. RNA concentration and
quality was determined using an Agilent Bioanalyzer (Agilent Technol-
ogies, Santa Clara, CA). Reverse transcription of mRNA to cDNA was ac-
complished using Superscript II™ (Life Technologies). Reactions were
performed in duplicate using 600 ng of RNA. The cDNA from the two re-
actions was pooled and quantified using a dye intercalation assay
(Quant-iT™ OliGreen® ssDNA Assay Kit, Life Technologies), according
to the manufacturer's instructions. For qPCR assays, 384-well plates
containing 2, 10 or 20 ng of each cDNA per well were used to allow
the characterization of low, medium or highly expressed transcripts.
All qPCR assays (10 μl) were performed in duplicate using an Applied
Biosystems 7900HT Fast Real Time PCR System (Life Technologies).
Primers and probes were designed using Primer Express® software (Life
expression levels were measured by qPCR and normalized using 3 month old mice as 100.

Middle-aged
vs. young

Young Middle-aged

anscription factor ↓ 100 ± 7 83 ± 3
tion factor complex Jun/AP-1 ↓ 100 ± 15 44 ± 6
A ↓ 100 ± 5 88 ± 4
-dependent transcription factor ↓ 100 ± 3 86 ± 3

urotrophic factors (BDNF,
and neurotrophin-4)

↓ 100 ± 5 83 ± 3

e kinase required for hippocampal
tiation (LTP) and spatial learning

↓ 100 ± 7 83 ± 3

e kinase in signal transduction ↓ 100 ± 5 85 ± 3

in signal transduction pathway ↓ 100 ± 3 84 ± 4
e kinase in signal transduction ↓ 100 ± 4 88 ± 3

aptic plasticity and memory formation ↓ 100 ± 12 68 ± 5

in the postsynaptic density of excitatory ↓ 100 ± 8 80 ± 2

olecule, binding partner of neurexins ↓ 100 ± 6 80 ± 4
nsity scaffolding protein ↓ 100 ± 3 84 ± 3
olecule ↓ 100 ± 4 88 ± 4
nsity scaffolding protein ↓ 100 ± 7 85 ± 3

esicles membrane protein ↓ 100 ± 4 81 ± 3
in secretory vesicles ↓ 100 ± 4 87 ± 3
tic vesicles with the presynaptic plasma ↓ 100 ± 4 88 ± 3

tic vesicles with the presynaptic plasma ↓ 100 ± 4 88 ± 3

o) coupled serotonin receptor ↓ 100 ± 11 71 ± 6
tion channel ↓ 100 ± 4 85 ± 3

of genes please see Table S1.
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Technologies) and synthesized by Biosearch Technologies (Petaluma, CA)
orwere purchased premade fromApplied Biosystems (Life Technologies).
Enzyme for qPCR reaction (SensiFAST™ Hi-Rox) was purchased from
Bioline (Taunton, MA) and used according to the manufacturer's in-
structions. Normalization of raw qPCR signals was performed using
the geometric mean of a panel of 7 house-keeping genes (B2m, Ppia,
Gapdh, Rplp0, Rpl13a, Tbp, Ubc) that were selected for their stable ex-
pression based on the geNorm algorithm (Vandesompele et al., 2002).
No significant change in the expression levels of housekeeping genes
was found between all groups. The relative expression level of each
targetwas calculated using the comparative threshold cycle (Ct)method,
with the expression level of vehicle-treated young mice (when analyze
age associated changes, Table 1) or vehicle-treated middle-aged mice
(when analyze treatment associated changes, Fig. 4 and Table S1) de-
fined as 100.

2.5. BrdU uptake assay

Hippocampal cell proliferation was assessed by quantifying the
number of cells in the sub-granular zone of the dentate gyrus labeled
by 5-bromo-2′-deoxyuridine (BrdU), based on published protocols
(Wojtowicz and Kee, 2006). Briefly, mice were intraperitoneally
injected 4 timeswith 50mg/kg BrdU (Sigma, St. Louis,MO)with 2 h be-
tween injections and sacrificed the next day. Brains were fixed by trans-
cardiac perfusion with phosphate-buffered saline followed by 4%
paraformaldehyde (Affymetrix, Santa Clara, CA) and post fixed in 4%
paraformaldehyde overnight. After equilibrating in 30% sucrose, brains
were stored in −80 °C and later cryosectioned into 30 μm slices using
a microtome (Thermo Scientific, Waltham, MA). Free-floating hippo-
campal slices underwent antigen retrieval (2 M HCl at 37 °C for
30 min followed by rinsing in 0.1 M borate buffer), membrane perme-
ation (0.5% Triton X-100 in tris-buffered saline (TBS) at room tempera-
ture for 45 min), quenching of endogenous peroxidase activity (0.3%
H2O2 at room temperature for 10min), blocking of non-specific binding
(5% goat serum (Vector Laboratories, Burlington, CA) in TBS at room
temperature for 45 min), primary antibody labeling (1:1000 anti-BrdU
antibody developed in rat (Accurate Chemical & Scientific Corporation,
Westbury, NY) in 5% goat serum/TBS 4 °C overnight), secondary anti-
body reaction (1:200 goat anti-rat IgG, mouse adsorbed (Victor Labora-
tories, Burlingame, CA)) and visualized using an avidin–biotin complex
labeled peroxidase system (Vectastain Elite ABC kit, Vector Laborato-
ries) with 3,3′-diaminobenzidine (DAB) as the chromogen. Extensive
wash (5 min × 5 times) were carried out between each incubation
steps. Brain slices were then transferred to gelatin coated slides (Fisher
Scientific, Waltham, MA), dehydrated by dipping in increasing concen-
trations of ethanol (50%, 70%, 95% and 100%) and washed in xylene.
Coverslips were placed on slides in the presence of DPX mounting
media (Electron Microscopy Sciences, Hatfield, PA). BrdU-positive cells
were manually counted under a microscope (Zeiss, Oberkochen,
Germany, total magnification: 100×) for every 6th hippocampal slices,
throughout the rostrocaudal extent of the dentate gyrus in the
subgranular zone (within a two-nucleus thick region from the granular
cell layer), essentially as previously described (Walter et al., 2011). The
total number of BrdU-positive cells from 10 sub-granular regions is
reported.

2.6. Protein extraction and enzyme-linked immunosorbent assay (ELISA)

Dissectedhippocampiwere snap frozen and stored in−80 °C. Tissue
washomogenized using pellet pestles (Sigma) followed by sonication in
lysis buffer (25 mM Tris–HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, and
1mMEGTA) containing protease inhibitors (cOmplete® protease inhib-
itor cocktail, Roche, Mannheim, Germany) on ice and constant agitation
at 4 °C for 1 h. After centrifugation (30 min at 13,000 rpm and 4 °C),
protein concentration of the supernatant was measured using a
Micro BCA kit (Thermo Scientific, Waltham, MA). Growth factor
(BDNF, NT-3, IGF-1, NGF, and VEGF) levels were quantified using
ELISA kits, following the instructions of the manufacturer (Genway
Biotech, San Diego, CA). Results were standardized to the protein
concentration of each lysate sample.

2.7. Ex vivo autoradiography to determine serotonin transporter (SERT)
occupancy

To ensure that middle-aged mice in different treatment groups
received antidepressants in therapeutic ranges, SERT occupancy was
measured in ex vivo autoradiography experiments; detailed methods
have been described elsewhere (Li et al., 2012).

2.8. Statistical analysis

JMP10 (SAS, Cary, NC)was used for all statistical analysis. For behav-
ioral tests, quantification of hippocampal cell proliferation and growth
factor levels, age-related differences were assessed using a t-test be-
tween young and middle-aged subjects. Treatment-induced changes
in middle-aged mice were first compared using one-way ANOVA,
followed by a protected Dunnett's t-test comparing the vehicle treated
or fluoxetine treated group to vortioxetine treated middle-aged mice.
Chi-square test was used to analyze categorical results (proportion of
animals that had intact memories in object placement test-OP or in
novel object recognition test-OR). Significance is defined as p b 0.05
for these analyses.

As most of the gene expression level results were not normally dis-
tributed, they were analyzed using non-parametric methods. Two-
sample Wilcoxon/Kruskal–Wallis test (non-parametric equivalent of 2
sample t-test) was used to compare age-induced changes in individual
genes. One-wayWilcoxon/Kruskal–Wallis test (non-parametric equiva-
lent of one-way ANOVA)was used to compare drug-induced changes in
individual genes followed by post-hoc Steel test (non-parametric equiv-
alent of the protected Dunnett's test) comparing vehicle or fluoxetine
treated groups to vortioxetine treated middle-aged mice. Significance
is defined as p b 0.05.

3. Results

3.1. Middle-aged mice displayed deficits in visuospatial memory but had
intact recognition memory, social preference, anxiety-like and depression-like
behavior compared to young mice

Behaviors of otherwise healthy 12 month old female mice were
compared to those of 3 month old mice in a battery of tests encom-
passing a variety of behavioral domains including cognitive (Fig. 1),
affective, emotional and social behaviors (Fig. 2).

Middle-agedmice performed significantlyworse than youngmice in
the novel object placement test (OP), as assessed by preference score
(Fig. 1A, t(df = 29) = −3.71, p b 0.01) and by the proportion of animals
that had intact visuospatial memory (Fig. 1B: likelihood ratio χ2 =
12.91, p b 0.01). This visuospatial memory deficit was not due to a
non-specific change in object exploration, as the exploration of the
objects during the training trial (Trial 1) did not differ between
middle-aged and young mice (young 18 ± 5.2 s, middle-aged: 18.3 ±
3.2 s). In contrast to the visuospatial memory deficits observed in the
object placement test (OP), recognition memory was not significantly
impaired in middle-aged mice tested in the novel object recognition
test (OR, Fig. 1C and D).

Consistent with the fact that the middle-aged mice in this study
were otherwise healthy, we did not find robust deficits in affective,
emotional or social behavior compared to youngmice, though some sig-
nificant differences were evident (Fig. 2). In the open field test (OF),
12 month old mice explored the center more than the 3 month old
mice (i.e., less anxiety-like behavior) (t(df = 29) = 3.05, p b 0.01,
Fig. 2A), though the difference in track length was not significant



Fig. 1. Middle-aged mice display deficits in visuospatial memory.Middle-aged (12 month old) mice display deficits in visuospatial memory, assessed in the novel object placement
(a.k.a. novel object location), assessed as decreased preference for the displaced (novel) object (panel A) and also as a significantly smaller proportion of 12 month old mice passing
the test with a preference score N55% (panel B). Recognition memory was not impaired in 12 month old mice, assessed in the novel object recognition test (panels C and D). n = 15–
16 per group. Means and standard errors are shown (panels A and C). * indicates significant difference from young mice (p b 0.01).
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(t(df = 29) = −1.45, p = 0.16, Fig. 2B). In addition, 12 month old mice
did not differ from3month oldmice in terms of immobility in the forced
swim test (FS), a measure for depression-like behavior (Fig. 2C), or
levels of social exploration in the social preference test (SP), a measure
for sociability (Fig. 2D).

3.2. Vortioxetine, but not fluoxetine, improved visuospatial memory and
decreased depression-like behavior in middle-aged mice without affecting
general object exploration or locomotor activity

Chronic vortioxetine treatment significantly improved cognitive
performance in middle-aged mice assessed as increased preference
score in the novel object placement test (OP). There was a main ef-
fect of treatment in preference scores (F(2,34) = 3.30, p b 0.05,
Fig. 3A) with vortioxetine-treated middle-aged mice performing
better than vehicle-treated middle-aged mice. Vortioxetine treat-
ment also significantly improved the proportion of middle-aged
mice with intact visuospatial memory (likelihood ratio χ2 = 4.97,
p b 0.05, Fig. 3B) compared to vehicle treated middle-aged mice.
There was an apparent difference between vortioxetine and fluoxe-
tine treated groups but this did not reach significance in protected
post-hoc tests (p = 0.055 for preference scores, and p = 0.13 for
the proportion of animals with intact visuospatial memory). The ef-
fect of drug treatments on visuospatial memory was not due to
non-specific alterations of object exploration, as there was no signif-
icant change in total object exploration time during the training trial
(VEH 18.3 ± 3.2 s, VOR 9.0 ± 2.8 s, FLX 11.3 ± 3.5 s, F(2,28) = 2.31,
p = 0.11). Chronic drug treatment via food did not affect body
weight gains in middle-aged mice (before treatment: VEH 30.5 ±
1.0 g, VOR 28.5 ± 0.6 g, FLX 29.4 ± 0.8 g, after 1 month treatment:
VEH: 31.5 ± 1.1 g, VOR 31.7 ± 0.7 g, FLX 31.1 ± 1.0 g). Consistent
with previous results (Li et al., 2012, 2013), both drugs resulted in
a high level of SERT occupancy after 1 month of p.o. dosing in these
groups of middle-aged mice (VOR 84 ± 3%, FLX 97 ± 1%). In the
novel object recognition test (OR), there was no statistically signifi-
cant change in recognition memory induced by any treatment
(Fig. 3C).

Depression-like behavior was assessed in the forced swim test (FS).
Vortioxetine, but not fluoxetine, significantly decreased immobility
in middle-aged mice. There was a significant treatment effect
(F(2,54) = 3.87, p b 0.05, Fig. 3D and E), primarily due to vortioxetine
(p b 0.05, vortioxetine compared to vehicle). There was an apparent
difference between vortioxetine and fluoxetine treatment but this
did not reach statistical significance (p = 0.07). The vortioxetine-
induced reduction of immobility was not due to a global or non-
specific change in locomotor activity, as there was no significant
change in total track length in the open field test (OF): VEH 2467 ±
158 cm; VOR 2402 ± 96 cm; and FLX 2161 ± 100 cm. Neither



Fig. 2. Characterizationof young andmiddle-agedmice in affective, emotional and social domains. In the openfield test, 12month oldmice had less anxiety-like behavior, assessed as
higher levels of center exploration (panel A) and did not differ in voluntary ambulation (track length, panel B) compared to 3 month old mice. There was no significant alteration of
immobility in the forced swim test (panel C) or social exploration in the social preference test (panel D) in 12 month old mice. n = 15–19 per group for panels A–C, n = 10 per group
for panel D. Means and standard errors are shown. * indicates significant difference from young mice (p b 0.05).
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vortioxetine nor fluoxetine had a significant effect on anxiety-like be-
havior in middle-aged mice assessed by center exploration (Fig. 3F) in
the open field test (OF).

3.3. Middle-aged mice had wide-spread reduction in gene expression levels
compared to young mice, vortioxetine treatment increased expression of a
subset of these genes

The most robust age-related deficit was detected in visuospatial
memory. As the hippocampus is critical in spatial memory (Mumby
et al., 2002), we focused our subsequent studies on this brain region.
The hippocampal gene expression levels were measured using quanti-
tative RT-PCR.

Compared to 3 month old mice, there was a widespread reduction in
gene expression in 12 month old mice (Table 1). These genes include
transcription and translation factors (Nfkb1, Fos, Creb1, and Fmr1),
genes related to signal transduction (Ntrk2, Camk2a, Jak2, Prkca, and
Gsk3b), neuroplasticity (Arc, Shank1, Nlgn2, Homer1, Dlg4, and Ncam1)
and neurotransmission (Scg3, Syp, Snap25, Vamp1, Htr1d, and Grin1).

Chronic vortioxetine treatment of middle-aged mice increased
expression of specific genes in several functional categories compared
to vehicle treated mice (Fig. 4), including: transcription and translation
factors (Nfkb1, Fos, and Fmr1), neuroplasticity (Arc, Shank1, and
Nlgn2), signal transduction (Camk2a) and neurotransmission (Rab3a
and Dat). The effects of vortioxetine on the expression of some of
these genes were also significantly different from that of fluoxetine,
whichwas largely ineffective inmodifying gene expression. In addition,
almost all of these genes were reduced in 12month oldmice compared
to 3 month old mice. Therefore, changes in expression of these genes
were consistent with vortioxetine-induced improvements in the visuo-
spatial memory test. Please refer to Table S1 for common names, brief
descriptions of functions and statistical analysis for all genes measured
in this study.

3.4. Neither vortioxetine nor fluoxetine altered hippocampal cell proliferation
in middle-aged mice

Middle-aged mice had reduced levels of hippocampal cell prolifera-
tion compared to young mice. There was a significant reduction in the
number of cells in the subgranular zone of the dentate gyrus that incor-
porated the thymidine analog BrdU in 12 month old mice vs. 3 month
old mice (total number of BrdU positive cells in 10 dentate gyrus
subgranular zone regions in each animal: 3 month old 182 ± 9,
12 month old 36 ± 7, t(df = 14) = −12.5, p b 0.01). Chronic treatment
with vortioxetine did not significantly change the number of BrdU
positive cells in the sub-granular zone of the dentate gyrus of middle-
agedmice (F(2,20)= 0.54, p=0.59, Fig. 5) compared to vehicle or fluox-
etine treated mice. We found essentially the same pattern of results



Fig. 3. Behavioral effects of chronic antidepressant treatments in middle-aged mice. Vortioxetine (VOR) but not fluoxetine (FLX) significantly improved visuospatial memory in the
novel object placement test in middle-aged mice, assessed as preference score (panel A) or as the proportion of mice passing (panel B). There was no significant treatment effect in the
novel object recognition test (panel C). In the forced swim test, vortioxetine, but not fluoxetine, significantly reduced depression-like behavior inmiddle-agedmice, assessed as increased
immobility (panel D, group summary and panel E, scatterplot). Neither vortioxetine nor fluoxetine treatment altered anxiety-like behavior (center exploration in open field, panel F). n=
7–19 per group.Means and standard errors are shown (panels A, C, D and F). * indicates significant difference between vortioxetine and vehicle groups (p b 0.05) and+ indicates the com-
parison between vortioxetine and fluoxetine (p value shown in graph) groups following overall significant one-way ANOVA (p b 0.05). Dotted lines indicate the performance of young
mice for comparison only.
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using the Ki-67 antibody (number of Ki-67 positive cells in 10 sub-
granular zone regions of dentate gyrus: young 78 ± 23, middle-
aged + VEH 20 ± 7, middle-aged + VOR 21 ± 4, middle-aged + FLX
18 ± 5, n = 3–5 per group).

3.5. The effects of vortioxetine on visuospatial memorywere independent of
hippocampal levels of growth factors

Several growth factors were quantified in hippocampal homoge-
nates using commercial ELISA kits. In addition, TrkB (Ntrk2, the receptor
for BDNF and NT-3) was quantified by qPCR. There was no consistent
decrease or increase of growth factors in middle-aged mice compared
to young mice. Middle-aged mice had a higher level of NGF, lower
level of TrkB, and non-significant changes in the levels of BDNF, IGF-1,
NT-3 and VEGF, compared to young mice (dotted line in Fig. 6, and
Table S2). There was also no age-related change in BDNF mRNA levels
measured by qPCR (data not shown). The effects of antidepressants on
growth factors levels were variable and patterns of change were not
consistent with the results of the object placement test (Fig. 6). Thus,
the observed changes in growth factors did not reflect the functional
differences observed in behavioral tests (impaired in aged mice and
altered by vortioxetine but not fluoxetine treatment), nor did they
vary consistently by age. Please refer to Table S2 for detailed statistical
analysis results.

4. Discussion

Mild cognitive deficits occur as early as middle-age and are predic-
tive of progressive deficits in humans and in rodents (Larrabee and
Crook, 1994; Stone et al., 1997). Visuospatial ability shows a strong as-
sociation with age, in both humans and in rodent models (Aenlle
et al., 2009; Ennaceur et al., 2008; Hoogendam et al., 2014). This study
demonstrated an age-related cognitive deficit in visuospatial memory
in healthymiddle-agedmice. Thiswas accompanied by global decreases
in gene expression related to diverse physiological functions and by
extensive reduction in hippocampal cell proliferation, but not by a con-
sistent pattern of changes in growth factor levels. Chronic treatment
with the multimodal antidepressant, vortioxetine, but not fluoxetine,
improved visuospatial memory and decreased depression-like behavior
in middle-aged mice, consistent with clinical findings that vortioxetine
improves both cognitive function and depression in old patients
(Katona et al., 2012). The improved cognitive function in middle-aged
mice treated with vortioxetine was accompanied by increased mRNA
levels of transcription factors,members of signal transduction pathways
and neuroplasticity markers. Most of these genes had lower transcript
levels in the hippocampus of middle-aged vs. young mice. In contrast,
neither hippocampal cell proliferation nor growth factor levels were
related to improved performance in the behavioral tasks.

The cognitive behavioral tests used in the study are not confounded
by stressors or aversive stimuli, do not require food orwater deprivation
(Ennaceur andMeliani, 1992; Gulinello et al., 2009) and can be repeated
in the same subjects. The object placement task is dependent on intact
hippocampal function and is analogous to the visuospatial memory
tests used in humans (Haladjian and Mathy, 2015; Raber, 2015),
which are likely associated with mental rotation ability (Kelly et al.,
2013; Vandenberg and Kuse, 1978). This type of cognitive test has
been used in assessing cognitive impairments in patients (Caterini
et al., 2002; Lawrence et al., 2000).

In otherwise healthymiddle-agedmice, age-associated impairments
in cognitive performance were evident in visuospatial memory but not
in object recognitionmemory, consistent with other reports (Ron-Harel
et al., 2008; Wimmer et al., 2012). However, some behavioral signs of
aging could still be detected. There was a modest reduction in total
track length in open field. In the forced swim test, even though there
was no significant overall increase of immobility in aged vs. young
mice, there appeared to be a subpopulation of middle-aged mice
displaying higher depression-like behavior (more than 60% of the
middle-aged mice displayed high levels of immobility compared to
less than 45% of young mice showing high levels of immobility). The
reduction in depression-like behavior seen after vortioxetine treatment



Fig. 4. Chronic vortioxetine, but notfluoxetine, increased plasticity-related gene expression inmiddle-agedmice.Data fromqPCRare expressed as relative expression levels to that of
vehicle-treated 12 month old mice. These genes include transcription and translation factors (panel A), synaptic plasticity markers (panel B), signal transduction (panel C) and proteins
involved in neurotransmission (panel D). VEH: vehicle; VOR: vortioxetine; FLX:fluoxetine. Expression levels in 3month oldmice are indicatedwith a dotted line for comparison only. n=
10 per group. Means and standard errors are shown. * indicates significant difference between vortioxetine and vehicle groups (p b 0.05), + indicates significant (p b 0.05) difference
between vortioxetine and fluoxetine groups following a significant (p b 0.05) Wilcoxon/Kruskal–Wallis test (non-parametric equivalent of one-way ANOVA). ^ indicates non-significant
difference between vortioxetine and fluoxetine (p values shown in graph).

77Y. Li et al. / Pharmacology, Biochemistry and Behavior 135 (2015) 70–82
may be due to changes in the population of aged mice susceptible to
depression-like behavior. This is of particular importance as even mild
depressive symptoms negatively impact cognitive function in middle-
aged and old subjects (Brevik et al., 2013).

Modulations of specific subtypes of 5-HT receptors are thought to be
critically involved in cognitive functions (for a review, see Meneses,
2013). For example, the 5-HT3 receptor antagonist ondansetron
improved spatial memory in aged rats (Fontana et al., 1995; Pitsikas
et al., 1993) and increased c-Fos expression (Urzedo-Rodrigues et al.,
2014). In addition, 5-HT1A receptor (du Jardin et al., 2014; Haider
et al., 2012) and 5-HT7 receptor modulation (Roberts and Hedlund,
2012) affects hippocampal dependent cognitive functions in rodents.
Results from the current study support the hypothesis that direct recep-
tor activities may contribute to the effects of vortioxetine (du Jardin



Fig. 5. Neither vortioxetine norfluoxetine reversed the age-related reduction in hippocampal stem cell proliferation. Panels A–D: representativemicroscopic images of dentate gyrus
stained for BrdU. Panel A: young mice. Panel B: middle-aged mice treated with vehicle (VEH). Panel C: middle-aged mice treated with vortioxetine (VOR). Panel D: middle-aged mice
treated with fluoxetine (FLX). Scale bar: 400 μm. Panel E: total numbers of BrdU-positive cells from 10 dentate gyrus regions. Sample size = 7–8 per group. Means and standard errors
are shown. * indicates young mice significantly different from vehicle-treated middle-aged mice in pair-wise t-test (p b 0.01).
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et al., 2014; Jensen et al., 2014; Li et al., 2013) in these middle-aged
mice. First, vortioxetine improved visuospatial memory while fluoxe-
tine was not effective. Second, whereas vortioxetine selectively in-
creased transcription of multiple genes in the hippocampus, fluoxetine
had no effect on the majority of genes assessed. Furthermore, vorti-
oxetine significantly decreased depression-like behavior in 12 month
old mice while fluoxetine did not, which is consistent with the clinical
observation that elderly patients have a lower response to SSRIs
(Tedeschini et al., 2011) and that cognitive deficits in depressed and/
or elderly patients are also relatively insensitive to SSRI treatment
(Herzallah et al., 2013). Therefore, our results support that vortioxetine
is working via a different mechanism than the SSRI fluoxetine in this
model of age-related cognitive deficits.

Altering gene expression and the consequent changes in protein
levels may be one mechanism of the improved cognitive function in
middle-aged mice after chronic antidepressant administration. First, as
synaptic plasticity is an active process, it is plausible that manipulating
this process will affect cognitive function, including visuospatial memo-
ry. Second, results from this study showed that changes in gene
Fig. 6. Hippocampal growth factors and growth factor receptor levels after antidepressant
per group) and standardized to the protein concentration of the tissue homogenate (pg/mg pro
and expressed as relative expression level using vehicle-treated middle-aged mice as 100. Dott
ferences inNT-3 level reached overall significance in one-wayANOVA (pb 0.05). * indicates sign
comparison between vortioxetine and fluoxetine (p value shown in graph). VEH: vehicle; VOR
expression were consistent with the observed behavioral changes.
In middle-aged mice, the profound reduction in gene expression in
the hippocampus was accompanied with visuospatial memory im-
pairment in untreated and fluoxetine treated animals. Increased hip-
pocampal transcription of a subset of these genes (including Nfkb1, Fos,
Fmr1, Camk2a, Arc, Shank1, Nlgn2, Rab3a, and Ndor1) was accompa-
nied with improvement of performance in this hippocampal-
dependent task in animals treated with vortioxetine. Third, the prod-
ucts of those genes affected by vortioxetine can be considered as related
to neuroplasticity, which plays a key role in learning and memory
(Mayford et al., 2012). For instance, Arc is an immediate early gene
critical to neuroplasticity, learning and memory (for a review, see
Korb and Finkbeiner, 2011). Its post-synaptic expression is induced by
exposure to novelty and the resultant increase in synaptic activity, the
dysfunction of which has been indicated as a fundamental mechanism
of memory impairment. Another example is Fmr1. The protein coded
by Fmr1 (the Fragile X mental retardation protein, FMRP) regulates
translation of a variety ofmRNAs (Sethna et al., 2014). Impaired expres-
sion of Fmr1 has been related to cognitive dysfunction in patients with
treatment inmiddle-agedmice. Growth factor levels were quantified by ELISA (n= 4–9
tein). The growth factor receptor TrkB (Ntrk2)was quantified by qPCR (n= 10 per group)
ed line denotes the levels in young mice. Means and standard errors are shown. Only dif-
ificant difference between the vortioxetine andvehicle groups (p b 0.05) and ^ indicates the
: vortioxetine; FLX: fluoxetine.
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Fragile X syndrome and in carriers (Verkerk et al., 1991). Our data sug-
gest that altered expression of Fmr1 may also play a role in cognitive
deficits in middle-aged subjects as well as in developmental disorders.
Therefore, results from the current study support the hypothesis that
long-term changes in gene expression may contribute to the age-
related decline in cognition. We hypothesize that up-regulation of the
transcription factors that are reduced in middle-aged animals may be
a necessary prerequisite for the adequate expression of the specific
genes needed for maintaining synaptic plasticity and cognitive
functions.

Neurogenesis which has been shown to be involved in cognitive
impairment and depression in humans and in a variety of rodent
models, is a function of serotonergic regulation and may affect the re-
sponse to antidepressants in both cognitive and affective behavioral do-
mains (Adeosun et al., 2014; Alenina and Klempin, 2015; Anacker,
2014; Biscaro et al., 2012; Braun and Jessberger, 2014; Chadwick et al.,
2011; Cho et al., 2015; Dimitrov et al., 2014; Gundersen et al., 2013;
Hill et al., 2015; Jiang et al., 2015; Lin and Wang, 2014; Mendez-David
et al., 2013; Morais et al., 2014; O'Leary and Cryan, 2014; Parihar et al.,
2013; Pereira Dias et al., 2014; Ransome et al., 2012; Rotheneichner
et al., 2014; Schoenfeld and Cameron, 2015; Seib et al., 2013; Serafini
et al., 2014; Shetty, 2014; Suarez-Pereira et al., 2015; Yau et al., 2014).
In young adult mice, antidepressants increase stem cell proliferation
(Hodes et al., 2010; Santarelli et al., 2003; Tanti et al., 2013). However,
in the current study, amelioration of the deficits in the hippocampal-
dependent object placement task (OP) was not related to levels of
stem cell proliferation, nor was there evidence of increased levels of ap-
optosismarkers or gliosis (Gfap, Table S1), consistentwith the relatively
specific behavioral deficits and otherwise normal behavior of healthy
middle-aged mice. These data are also consistent with previous studies
dissociating performance in hippocampal tasks from levels of stem cell
proliferation in agedmice (Walter et al., 2011). The lack of treatment ef-
fect on hippocampal stem cell proliferation in the middle-aged animals
is also consistent with previous reports indicating that fluoxetine does
not increase stem cell proliferation in older (N8 months) rodents
(Couillard-Despres et al., 2009; Cowen et al., 2008; Guirado et al.,
2012). While the reasons that antidepressants do not increase stem
cell proliferation in middle-aged subjects are unclear, it appears that al-
ternative mechanisms (i.e., increased neuroplasticity and gene expres-
sion) are sufficient to improve the cognitive functions in middle-aged
mice.

The relationship between hippocampal growth factor levels and
cognitive function seems to be complex and insufficient to explain ei-
ther the existence or the reversal of cognitive impairment. Growth fac-
tor levels have a variable relationship with aging, with either increased,
decreased or unchanged levels reported compared to young animals
(Croll et al., 1998; Hattiangady et al., 2005; Katoh-Semba et al., 1998;
Muller et al., 2012; Shetty et al., 2005; Silhol et al., 2005, 2007). In
young adult rodents, the effects of fluoxetine on growth factors in hip-
pocampus are just as variable (Altar et al., 2003; Coppell et al., 2003;
Dias et al., 2003; Nibuya et al., 1996). Furthermore, although we found
some changes in growth factor levels after chronic antidepressant
treatment in middle-aged mice, none of these are consistent with the
observed changes in visuospatial memory. It has been reported else-
where that improvement in spatial memory in aged rodents were not
accompanied by a change in growth factor levels (Kumar et al., 2012).
It is important to note that this does not preclude an important role
for drug-induced changes in hippocampal growth factors in other
behavioral domains not addressed here. Regulation of growth factor
levels in other brain regions could also have important functional
consequences.

5. Conclusions

In conclusion, aging in healthy middle-aged mice is associated with
specific,mild deficits in cognitive function concomitantwithwidespread
reduction of gene expression, including reduced expression of several
transcription factors that may herald the inability to respond to stimuli
with critical regulation of downstreamprotein synthesis. Cognitive func-
tion in middle-aged mice was improved by the multimodal antidepres-
sant vortioxetine. The results from current study support the
hypothesis that the underlyingmechanisms bywhich vortioxetine affect
cognition involve increased expression of genes related to
neuroplasticity.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.pbb.2015.05.013.
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