132 research outputs found

    New cyclic oligothiophenes and their co-oligomers derivatives ofmolecular engineering interest

    No full text
    International audienceThe electronic properties of several series of bridged oligomers and their co-oligomers derivatives of five-membered biheterocycles (bithiophene, bipyrrole, bifuran bridged by CO or CS group) in their linear and cyclic structures (planar rings and crowns), have been studied using Density Functional Theory (DFT) calculations. The stability of ring forms of bridged oligo(6)biheterocycles is evidenced. Moreover, when replacing the CO bridging group by the CS one, in all oligomers the HOMO-LUMO energy gap is reduced, due mainly to the strongest stabilization of the LUMO. This energy gap is further reduced with the introduction of bridged bithiophene or bridged bifuran in the cyclic chain of bridged bipyrrole, thus suggesting an improvement of the conductivity properties of such species. The CS bridged co-oligo(3)(bithiophene-bipyrrole) and CS bridged co-oligo(3)(bifuran-bipyrrole) seems to be promising candidates for molecular engineering applications

    Redox properties of biscyclopentadienyl uranium(V) imido-halide complexes: a relativistic DFT study

    No full text
    International audienceCalculations of ionization energies (IE) and electron affinities (EA) of a series of biscyclopentadienyl imido-halide uranium(V) complexes Cp*2U(=N-2,6-(i)Pr2-C6H3)(X) with X = F, Cl, Br, and I, related to the U(IV)/U(V) and U(V)/U(VI) redox systems, were carried out, for the first time, using density functional theory (DFT) in the framework of the relativistic zeroth order regular approximation (ZORA) coupled with the conductor-like screening model (COSMO) solvation approach. A very good linear correlation (R(2) = 0.993) was obtained, between calculated ionization energies at the ZORA/BP86/TZP level, and the experimental half-wave oxidation potentials E1/2. A similar linear correlation between the computed electron affinities and the electrochemical reduction U(IV)/U(III) potentials (R(2) = 0.996) is obtained. The importance of solvent effects and of spin-orbit coupling is definitively confirmed. The molecular orbital analysis underlines the crucial role played by the 5f orbitals of the central metal whereas the Nalewajski-Mrozek (N-M) bond indices explain well the bond distances variations following the redox processes. The IE variation of the complexes, i.e., IE(F) < IE(Cl) < IE(Br) < IE(I) is also well rationalized considering the frontier MO diagrams of these species. Finally, this work confirms the relevance of the Hirshfeld charges analysis which bring to light an excellent linear correlation (R(2) = 0.999) between the variations of the uranium charges and E1/2 in the reduction process of the U(V) species

    Improved Transparency-Nonlinearity Trade-Off with Boroxine-Based Octupolar Molecules

    No full text
    C. Katan present address: CNRS UMR6082 FOTON, INSA de Rennes, 20 avenue des Buttes de Coësmes, CS 70839, 35708 RENNES cedex 7, FranceInternational audienceOver the last two decades, a substantial effort has been devoted to the design of molecules with enhanced NLO responses. It has become increasingly clear over recent years that multipolar structures offer challenging possibilities in this respect. In particular, the octupolar framework provides an interesting route towards enhanced NLO responses and improved nonlinearity-transparency trade-off. In this perspective, we have implemented an innovative route based on octupolar structures derived from the boroxine ring. By grafting three electron-donating appendices on the electron-deficient boroxine core, octupolar quasi-planar molecules displaying markedly improved nonlinearity-transparency trade-off, as compared to the prototypical octupole (TATB) or the extensively studied triazine derivatives, were designed. This route indeed led to octupolar molecules showing (0) values (from calculations and solution measurements) larger than that of TIATB while remaining blue-shifted by nearly 100 nm and totally transparent in the visible region. Combined experimental and theoretical investigations reveal that this behavior is related to a periphery-to-core intramolecular charge transfer phenomenon in relation with the low-aromaticity and electron-withdrawing character of the boroxine ring. This study opens a new route for molecular engineering of transparent octupolar derivatives for NLO, including the design of effective materials for SHG in the visible-blue regio

    Étude théorique de complexes inorganiques et de clusters métalliques de taille nanométrique (interprétation de leurs structures et de leurs propriétés)

    Get PDF
    Les travaux décrits dans cette thèse ont porté sur l'application de méthodes de la chimie quantique à l'étude de différents types et familles de composés chimiques, à savoir, des clusters encapsulant des anions et des complexes inorganiques de métaux de transition. On s'est particulièrement intéressé à la structure géométrique, la structure électronique et aux relations structures-propriétés optiques de systèmes moléculaires stables et bien caractérisés.The work reported in this manuscript deals with the applications of quantum chemistry tools on several types and families of chemical compounds, i. e., clusters entrapping anions and transition metals inorganic complexes. We have mainly focused our attention on the geometrical structure, the electronic structure and on the relationship between structure and optical properties of stable molecules which have been synthesized and characterized.RENNES1-Bibl. électronique (352382106) / SudocSudocFranceF

    Vibrational spectroscopy and DFT calculations of 1,​3-​dibromo-​2,​4,​6-​trimethylbenzene: Anharmonicity, coupling and methyl group tunneling

    No full text
    International audienceThe Raman, IR and INS spectra of 1,3-dibromo-2,4,6-trimethylbenzene (DBMH) were recorded in the 80-3200 cm-1 range. The molecular conformation and vibrational spectra of DBMH were computed at the MPW1PW91/LANL2DZ level. Except for the methyl 2 environment, the agreement between the DFT calculations and the neutron diffraction structure is almost perfect (deviations < 0.01 Å for bond lengths, < 0.2° for angles). The frequencies of the internal modes of vibration were calculated with the harmonic and anharmonic approximations; the later method yields results that are in remarkable agreement with the spectroscopic data, resulting in a confident assignment of the vibrational bands. Thus, no scaling is necessary. The coupling, in phase or anti-phase, of the motions of symmetrical C-Br and C-Me bonds is highlighted. Our DFT calculations suggest that the torsion of methyl groups 4 and 6 is hindered in deep wells, whereas methyl group 2 is a quasi-free rotor. The failure of the calculations to determine the frequencies of the methyl torsional modes is explained as follows: DFT does not consider the methyl spins and assumes localization of the protons, whereas the methyl groups must be treated as quantum rotors

    Cyclometalated platinum(II) with ethynyl-linked azobenzene ligands: an original switching mode.

    No full text
    International audienceThe photophysical properties of 6-phenyl-2,2'-bipyridyl platinum(ii) complexes bearing different σ-alkynyl-linked azobenzene ancillary ligands were investigated. These complexes exhibited strong, broad, structureless charge-transfer bands in the visible region, which were red-shifted when the electron-donating ability of the para substituent on the azo-acetylide ligand increased. When excited at the charge-transfer absorption band, the complexes exhibited weak green emission, which was assigned to a triplet metal-to-ligand charge transfer/interligand charge transfer emission ((3)MLCT/(3)L'LCT). The presence of an amino substituent in the azobenzene moiety opened the possibility of protonation, which led to the formation of an azonium based derivative and resulted in drastic perturbations of the molecular orbitals and photophysical properties of the Pt-acetylide complex. These studies are fully supported by DFT and TD-DFT calculations

    A DFT and experimental investigation of the electron affinity of the triscyclopentadienyl uranium complexes Cp3UX

    Get PDF
    International audienceRelativistic Density Functional Theory (DFT) based methods coupled with the Conductor-like Screening Model (COSMO) for a realistic solvation approach are used to investigate the electron affinity (EA) of a series of triscyclopentadienyl uranium complexes Cp3UX (X = Cl, BH4, SPh, SiPr and OiPr) related to the U(IV)/U(III) redox system. E1/2 half-wave potentials have been measured in solution (THF) under the same rigorous conditions for all the species under consideration. A good correlation (r2 = 0.99) is found between the computed EA values, either in the gas phase or in solution, and the experimental half-wave potentials; the study brings to light the importance of spin-orbit coupling effects which must be taken into account in order to achieve the observed agreement between theory and experiment. The influence of the electron donating character of the X ligand on the orbital involved in the reduction process, namely the lowest unoccupied molecular orbital (LUMO) of the neutral U(IV) complexes, and on the EAs is discussed

    Perfluorocyclohexene bridges in inverse DiArylEthenes: synthesis through Pd-catalysed C-H bond activation, experimental and theoretical studies on their photoreactivity.

    Get PDF
    International audienceThe palladium-catalysed direct di-heteroarylation of 1,2-dichloroperfluorocyclohexene with a variety of heteroarenes gives rise in to a new family of 1,2-di(heteroaryl)perfluorocyclohexenes. These derivatives do not exhibit photoreactivity and this unexpected outcome is explained by calculations demonstrating the lack of reactive isomers

    Switching of excited states in cyclometalated platinum complexes incorporating pyridyl-acetylide ligands (Pt-C[triple bond, length as m-dash]C-py): a combined experimental and theoretical study

    No full text
    International audienceThis article presents the design of cyclometalated platinum(II) complexes incorporating pyridyl-appended acetylide ligands of the form Pt-C[triple bond, length as m-dash]C-py, acting either as sites for protonation or methylation reactions or as a host receptor for binding metal cations. The complexes studied are Pt(t-Bu2phbpy)(-C[triple bond, length as m-dash]C-py), 2, which can undergo protonation at the pyridyl N; its cationic N-methylated derivative [Pt(t-Bu2phbpy)(-C[triple bond, length as m-dash]C-pyMe)]+, 4, which serves as a model of the N-protonated species; and a derivative in which the pyridyl ring is incorporated into a macrocyclic diamide-crown ether ligand (3). The co-ligand t-Bu2phbpy is a cyclometalated, N[caret]N[caret]C-coordinated phenylbipyridine ligand carrying tert-butyl groups at the 4-positions of the pyridyl rings. The photophysical properties of the neutral compounds 2 and 3 have been compared to those of the pyridinium, methyl-pyridinium or metal-complexed species (namely 2-H+, 4 and 3-Pb2+). Detailed TD-DFT calculations provide a theoretical basis to account for the experimentally-observed changes upon protonation/methylation/complexation. The joint TD-DFT and experimental studies provide evidence for an unprecedented molecular switch in the nature of the excited state (from mixed L′LCT/MLCT to ML′CT) in which the acceptor ligand in the CT process switches from being the N[caret]N[caret]C ligand to the pyridyl acetylide

    Donor-substituted triaryl-1,3,5-triazinanes-2,4,6-triones: octupolar NLO-phores with a remarkable transparency-nonlinearity trade-off

    No full text
    International audienceWe report in this letter the measurement of the hyperpolarizabilities of a series of donor-substituted triaryl-1,3,5-triazinanes-2,4,6-triones by hyper Rayleigh scattering (HRS). A remarkable transparency-nonlinearity trade-off is evidenced for these octupolar NLO-phores which might be accessed in a straightforward synthetic way and in a few steps from commercial isocyanates
    • …
    corecore