108 research outputs found

    Collision of a vortex pair with a contaminated free surface

    Full text link
    Collision of a viscous, two‐dimensional vortex pair with a contaminated, free surface is studied numerically. The Froude number is assumed to be small, so the surface remains flat. The full Navier–Stokes equations and a conservation equation for the surface contaminant are solved numerically by a finite difference method. The shear stress at the free surface is proportional to the contamination gradient, and simulations for several values of the proportionality constant (W), as well as Reynolds numbers, have been performed. The evolution is also compared with full‐slip and no‐slip boundaries. As the vortices approach the surface, the upwelling between them pushes the contaminant outward, reducing the amount directly above the vortices, and leading to a clean region for low W. As W is increased the clean region becomes smaller, and eventually no clean region is formed. Except for very low W, the contaminant layer leads to the creation of secondary vortices, causing the original vortices to rebound in a similar way as vortices colliding with a no‐slip boundary. For one case, the numerical results are compared with experimental measurements with satisfactory results. Computations of a vortex pair colliding obliquely with a contaminated surface and head‐on collision of axisymmetric vortex rings are also presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70265/2/PFADEB-4-6-1215-1.pd

    Electrochemical sensor based on multi-walled carbon nanotubes and 4-(((4-mercaptophenyl)imino)methyl) benzene-1,2-diol for simultaneous determination of epinephrine in the presence of acetaminophen

    Get PDF
    A carbon paste electrode modiïŹed with 4-(((4-mercaptophenyl)imino)methyl)benzene-1,2-diol (MIB) and multi-walled carbon nanotubes MIB /CNT/CPE) was prepared for determination of epinefrine (EP) in the presence of acetaminophen (AC). Cyclic voltammetry, chronoamperometry and differential pulse voltammetry (DPV) techniques were used to investigate the modiïŹed electrode for the electrocatalytic oxidation of (EP) and (AC) in aqueous solutions. The separation of the oxidation peak potential for EP- AC was 200 mV. Under the optimum conditions, the calibration curve for EP was obtained in the range of 1.0 to 25.0 ”M and 25.0 to 500.0 ”M. The diffusion coefïŹcient for the oxidation of EP at the surface of modiïŹed electrode was calculated as 5.76×10-5 cm2s-1.</p

    Diastereoselective Synthesis of Pyranoquinolines on Zirconium-Containing UiO-66 Metal-Organic Frameworks

    Full text link
    [EN] The Zr terephthalate MOFs UiO-66 and UiO-66-NH2 have been found to be highly diastereoselective catalysts for the synthesis of a pyrano[3,2-c]quinoline through an inverse electron -demand aza-Diels-Alder [4+2] cycloaddition of an aryl Qmine (formed in situ from aniline and benzaldehyde) and 3,4-dihydro-2H-pyran in one pot, affording the corresponding trans isomer in diastereomeric excesses of 90-95 %. The solids are stable under the reaction conditions and can be reused at least three times without significant loss of activity or diastereoselectivity.Financial support from the Generalitat Valenciana (projects Consolider-Ingenio MULTICAT and AICO/2015/065), the Spanish Ministry of Economy and Competitiveness (MINECO) (program Severn Ochoa SEV20120267), and the Spanish Ministry of Science and Innovation (MICINN) (project MAT2014-52085-C2-1-P) is gratefully acknowledged. V. L. R. thanks the Fundacion "La Caixa" for a "La Caixa-Severo Ochoa" Ph. D. Scholarship. This project received funding from the European Union's Horizon 2020 Tesearch and Innovation Programme under the Marie Skolodowska Curie grant agreement number 641887.LĂłpez-Rechac, V.; GarcĂ­a Cirujano, F.; Corma CanĂłs, A.; LlabrĂ©s I Xamena, FX. (2016). Diastereoselective Synthesis of Pyranoquinolines on Zirconium-Containing UiO-66 Metal-Organic Frameworks. European Journal of Inorganic Chemistry. 27:4512-4516. https://doi.org/10.1002/ejic.201600372S4512451627Li, B., Wang, H., & Chen, B. (2014). Microporous Metal-Organic Frameworks for Gas Separation. Chemistry - An Asian Journal, 9(6), 1474-1498. doi:10.1002/asia.201400031Li, J.-R., Sculley, J., & Zhou, H.-C. (2011). Metal–Organic Frameworks for Separations. Chemical Reviews, 112(2), 869-932. doi:10.1021/cr200190sRodenas, T., Luz, I., Prieto, G., Seoane, B., Miro, H., Corma, A., 
 Gascon, J. (2014). Metal–organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 14(1), 48-55. doi:10.1038/nmat4113Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metall-organische GerĂŒste fĂŒr die Katalyse. Angewandte Chemie, 121(41), 7638-7649. doi:10.1002/ange.200806063Llabres i Xamena, F., & Gascon, J. (Eds.). (2013). Metal Organic Frameworks as Heterogeneous Catalysts. Catalysis Series. doi:10.1039/9781849737586Gascon, J., Corma, A., Kapteijn, F., & LlabrĂ©s i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959kYamada, N., Kadowaki, S., Takahashi, K., & Umezu, K. (1992). MY-1250, a major metabolite of the anti-allergic drug repirinast, induces phosphorylation of a 78-kDa protein in rat mast cells. Biochemical Pharmacology, 44(6), 1211-1213. doi:10.1016/0006-2952(92)90387-xFaber, K., StÚckler, H., & Kappe, T. (1984). Non-steroidal antiinflammatory agents.1. Synthesis of 4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl alkanoic acids by the wittig reaction of quinisatines. Journal of Heterocyclic Chemistry, 21(4), 1177-1181. doi:10.1002/jhet.5570210450Weirich, J., & Antoni, H. (1990). Differential Analysis of the Frequency-Dependent Effects of Class 1 Antiarrhythmic Drugs According to Periodical Ligand Binding. Journal of Cardiovascular Pharmacology, 15(6), 998-1009. doi:10.1097/00005344-199006000-00019Jacquemond-Collet, I., Benoit-Vical, F., Valentin, A., Stanislas, E., MalliĂ©, M., & FourastĂ©, I. (2002). Antiplasmodial and Cytotoxic Activity of Galipinine and other Tetrahydroquinolines from Galipea officinalis. Planta Medica, 68(1), 68-69. doi:10.1055/s-2002-19869Wallace, O. B., Lauwers, K. S., Jones, S. A., & Dodge, J. A. (2003). Tetrahydroquinoline-Based selective estrogen receptor modulators (SERMs). Bioorganic & Medicinal Chemistry Letters, 13(11), 1907-1910. doi:10.1016/s0960-894x(03)00306-8Dorey, G., Lockhart, B., Lestage, P., & Casara, P. (2000). New quinolinic derivatives as centrally active antioxidants. Bioorganic & Medicinal Chemistry Letters, 10(9), 935-939. doi:10.1016/s0960-894x(00)00122-0Preface. (1996). Zeolites, 17(1-2), 1-2. doi:10.1016/s0144-2449(96)80002-9Ramesh, M., Mohan, P. S., & Shanmugam, P. (1984). A convenient synthesis of flindersine, atanine and their analogues. Tetrahedron, 40(20), 4041-4049. doi:10.1016/0040-4020(84)85084-xCirujano, F. G., Leyva-PĂ©rez, A., Corma, A., & LlabrĂ©s i Xamena, F. X. (2013). MOFs as Multifunctional Catalysts: Synthesis of Secondary Arylamines, Quinolines, Pyrroles, and Arylpyrrolidines over Bifunctional MIL-101. ChemCatChem, 5(2), 538-549. doi:10.1002/cctc.201200878Povarov, L. S. (1967). αÎČ-UNSATURATED ETHERS AND THEIR ANALOGUES IN REACTIONS OF DIENE SYNTHESIS. Russian Chemical Reviews, 36(9), 656-670. doi:10.1070/rc1967v036n09abeh001680Nagarapu, L., Bantu, R., & Puligoundla, R. G. (2011). Tin(II)chloride catalyzed synthesis of pyranoquinolines, phenanthridinone and phenanthridine derivatives. European Journal of Chemistry, 2(2), 260-265. doi:10.5155/eurjchem.2.2.260-265.263Mahajan, D., Ganai, B. A., Sharma, R. L., & Kapoor, K. K. (2006). Antimony chloride doped on hydroxyapetite catalyzed stereoselective one-pot synthesis of pyrano[3,2-c]quinolines. Tetrahedron Letters, 47(45), 7919-7921. doi:10.1016/j.tetlet.2006.09.007Abdollahi-Alibeik, M., & Pouriayevali, M. (2011). 12-Tungstophosphoric acid supported on nano sized MCM-41 as an efficient and reusable solid acid catalyst for the three-component imino Diels–Alder reaction. Reaction Kinetics, Mechanisms and Catalysis, 104(1), 235-248. doi:10.1007/s11144-011-0345-9Kamble, V. T., Davane, B. S., Chavan, S. A., Muley, D. B., & Atkore, S. T. (2010). Imino Diels–Alder reactions: One-pot synthesis of tetrahydroquinolines. Chinese Chemical Letters, 21(3), 265-268. doi:10.1016/j.cclet.2009.11.016Yu, Y., Zhou, J., Yao, Z., Xu, F., & Shen, Q. (2010). Stereoselective synthesis of pyrano[3,2-c]- and furano[3,2-c]quinolines: Gadolinium chloride catalyzed one-pot aza-Diels-Alder reactions. Heteroatom Chemistry, 21(5), 351-354. doi:10.1002/hc.20612Khan, A. T., Das, D. K., & Khan, M. M. (2011). Ferric sulfate [Fe2(SO4)3·xH2O]: an efficient heterogeneous catalyst for the synthesis of tetrahydroquinoline derivatives using Povarov reaction. Tetrahedron Letters, 52(35), 4539-4542. doi:10.1016/j.tetlet.2011.06.080Jeong, K. S., Go, Y. B., Shin, S. M., Lee, S. J., Kim, J., Yaghi, O. M., & Jeong, N. (2011). Asymmetric catalytic reactions by NbO-type chiral metal–organic frameworks. Chemical Science, 2(5), 877. doi:10.1039/c0sc00582gVermoortele, F., Ameloot, R., Alaerts, L., Matthessen, R., Carlier, B., Fernandez, E. V. R., 
 De Vos, D. E. (2012). Tuning the catalytic performance of metal–organic frameworks in fine chemistry by active site engineering. Journal of Materials Chemistry, 22(20), 10313. doi:10.1039/c2jm16030gGole, B., Bar, A. K., Mallick, A., Banerjee, R., & Mukherjee, P. S. (2013). An electron rich porous extended framework as a heterogeneous catalyst for Diels–Alder reactions. Chemical Communications, 49(67), 7439. doi:10.1039/c3cc43681kGrigoropoulos, A., Whitehead, G. F. S., Perret, N., Katsoulidis, A. P., Chadwick, F. M., Davies, R. P., 
 Rosseinsky, M. J. (2016). Encapsulation of an organometallic cationic catalyst by direct exchange into an anionic MOF. Chemical Science, 7(3), 2037-2050. doi:10.1039/c5sc03494aLiu, Y., Mo, K., & Cui, Y. (2013). Porous and Robust Lanthanide Metal-Organoboron Frameworks as Water Tolerant Lewis Acid Catalysts. Inorganic Chemistry, 52(18), 10286-10291. doi:10.1021/ic400598xFeng, D., Gu, Z.-Y., Chen, Y.-P., Park, J., Wei, Z., Sun, Y., 
 Zhou, H.-C. (2014). A Highly Stable Porphyrinic Zirconium Metal–Organic Framework with shp-a Topology. Journal of the American Chemical Society, 136(51), 17714-17717. doi:10.1021/ja510525sCavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130(42), 13850-13851. doi:10.1021/ja8057953Valenzano, L., Civalleri, B., Chavan, S., Bordiga, S., Nilsen, M. H., Jakobsen, S., 
 Lamberti, C. (2011). Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory. Chemistry of Materials, 23(7), 1700-1718. doi:10.1021/cm1022882Cirujano, F. G., Corma, A., & LlabrĂ©s i Xamena, F. X. (2015). Zirconium-containing metal organic frameworks as solid acid catalysts for the esterification of free fatty acids: Synthesis of biodiesel and other compounds of interest. Catalysis Today, 257, 213-220. doi:10.1016/j.cattod.2014.08.015Cirujano, F. G., Corma, A., & LlabrĂ©s i Xamena, F. X. (2015). Conversion of levulinic acid into chemicals: Synthesis of biomass derived levulinate esters over Zr-containing MOFs. Chemical Engineering Science, 124, 52-60. doi:10.1016/j.ces.2014.09.047Vermoortele, F., Bueken, B., Le Bars, G., Van de Voorde, B., Vandichel, M., Houthoofd, K., 
 De Vos, D. E. (2013). Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). Journal of the American Chemical Society, 135(31), 11465-11468. doi:10.1021/ja405078uVermoortele, F., Vandichel, M., Van de Voorde, B., Ameloot, R., Waroquier, M., Van Speybroeck, V., & De Vos, D. E. (2012). Electronic Effects of Linker Substitution on Lewis Acid Catalysis with Metal-Organic Frameworks. Angewandte Chemie International Edition, 51(20), 4887-4890. doi:10.1002/anie.201108565Vermoortele, F., Vandichel, M., Van de Voorde, B., Ameloot, R., Waroquier, M., Van Speybroeck, V., & De Vos, D. E. (2012). Electronic Effects of Linker Substitution on Lewis Acid Catalysis with Metal-Organic Frameworks. Angewandte Chemie, 124(20), 4971-4974. doi:10.1002/ange.201108565Da Silva-Filho, L., da Silva, B., & Martins, L. (2012). Niobium Pentachloride Catalyzed Multicomponent Povarov Reaction. Synlett, 23(13), 1973-1977. doi:10.1055/s-0032-1316587Zhou, Z., Xu, F., Han, X., Zhou, J., & Shen, Q. (2007). Stereoselective Synthesis of Pyrano[3,2-c]- and Furano[3,2-c]quinolines: Samarium Diiodide-Catalyzed One-Pot Aza-Diels–Alder Reactions. European Journal of Organic Chemistry, 2007(31), 5265-5269. doi:10.1002/ejoc.200700288Babu, G., & Perumal, P. T. (1998). Convenient synthesis of pyrano[3,2-c]quinolines and indeno[2,1-c] quinolines by imino Diels-Alder reactions. Tetrahedron Letters, 39(20), 3225-3228. doi:10.1016/s0040-4039(98)00397-9Yadav, J., Subba Reddy, B., Madhuri, C. R., & Sabitha, G. (2004). LiBF4-Catalyzed Imino-Diels-Alder Reaction: A Facile Synthesis of Pyrano- and Furoquinolines. Synthesis, 2001(07). doi:10.1055/s-2001-14904Semwal, A., & Nayak, S. K. (2006). Copper(II) Bromide–Catalyzed Imino Diels–Alder Reaction: Synthesis of Pyrano[3,2‐c]‐ and Furo [3,2‐c]tetrahydroquinolines. Synthetic Communications, 36(2), 227-236. doi:10.1080/00397910500334595Domingo, L. R., Aurell, M. J., SĂĄez, J. A., & Mekelleche, S. M. (2014). Understanding the mechanism of the Povarov reaction. A DFT study. RSC Advances, 4(48), 25268. doi:10.1039/c4ra02916jLucchini, V., Prato, M., Scorrano, G., Stivanello, M., & Valle, G. (1992). Acid-catalysed addition of N-aryl imines to dihydrofuran. Postulated dependence of the reaction mechanism on the relative face of approach of reactants. Journal of the Chemical Society, Perkin Transactions 2, (2), 259. doi:10.1039/p29920000259Xu, X., Rummelt, S. M., Morel, F. L., Ranocchiari, M., & van Bokhoven, J. A. (2014). Selective Catalytic Behavior of a Phosphine-Tagged Metal-Organic Framework Organocatalyst. Chemistry - A European Journal, 20(47), 15467-15472. doi:10.1002/chem.201404498Schoenecker, P. M., Carson, C. G., Jasuja, H., Flemming, C. J. J., & Walton, K. S. (2012). Effect of Water Adsorption on Retention of Structure and Surface Area of Metal–Organic Frameworks. Industrial & Engineering Chemistry Research, 51(18), 6513-6519. doi:10.1021/ie202325pKandiah, M., Nilsen, M. H., Usseglio, S., Jakobsen, S., Olsbye, U., Tilset, M., 
 Lillerud, K. P. (2010). Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chemistry of Materials, 22(24), 6632-6640. doi:10.1021/cm102601

    Stable equations for nonlinear dispersive water waves.

    Full text link
    For reasons that are clarified in the course of the dissertation, we implement a novel numerical technique (spectral method) and investigate both numerically and analytically the behavior of different Boussinesq-type equations in confronting short waves. The power of spectral methods in handling higher order dispersive terms is extensively demonstrated and confirmed in this work. We have shown that some of these equations (the classical Boussinesq equation included) behave very poorly in dealing with short wave data. Although the more straight forward case of Fourier spectral method in a periodic domain is used for most of the study, some cases of the Chebyshev spectral method are also tried for one uni-directional wave equation (the KdV equation) in a non-periodic domain. The thesis is divided into seven chapters. Chapter I contains an introduction, some historical notes, and the motivation of the research. Chapter II begins with a short discussion of the classical wave equation. This is basically done to show that one can look at the nonlinear dispersive wave equations as higher order versions of the linear advection equation and linear wave equation. Then, a list of Boussinesq equations encountered in the literature is presented with some comments about each version. Chapter III concerns the introduction of the mathematical techniques used to study the equations. The central result in Chapter IV is to show the numerical techniques that are used to study different equations. Chapter V presents different numerical results. Mainly, a Fourier spectral scheme is used to solve the equations and in this chapter, various versions of the Boussinesq equations are solved. Chapter V is devoted to the comparison of different water wave equations and the final conclusions and recommendations are included in Chapter VII. (Abstract shortened by UMI.).Ph.D.Civil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/103898/1/9423129.pdfDescription of 9423129.pdf : Restricted to UM users only
    • 

    corecore