28 research outputs found
Development of Single Nucleotide Polymorphism Markers for the Wheat Curl Mite Resistance Gene Cmc4
Wheat curl mite (Aceria tosichella Keifer) is an important wheat (Triticum aestivum L. em. Thell.) pest in many wheat-growing regions worldwide. Mite feeding damage not only directly affects wheat yield, but A. tosichella also transmits Wheat streak mosaic virus (WSMV). Wheat resistance to A. tosichella, therefore, helps control WSMV. OK05312 (PI 670019) is an advanced breeding line released from Oklahoma that shows a high level of A. tosichella resistance. To map the gene(s) conditioning wheat resistance to A. tosichella in OK05312, a genetic linkage map was constructed using single nucleotide polymorphism (SNP) markers derived from genotyping-by-sequencing (GBS) and a population of 186 recombinant inbred lines (RILs) from the cross ‘Jerry’ (PI 632433)/OK05312. Seedlings of both parents and the RIL population were infested by A. tosichella Biotype 1 in greenhouse experiments. One major quantitative trait locus was identified on the short arm of chromosome 6D, which corresponds to the previously reported gene Cmc4 for A. tosichella resistance. This gene explained up to 71% of the phenotypic variation and was delimited in a 1.7-Mb (?3.3-cM) region by SNPs 370SNP7523 and 370SNP1639. We successfully converted 12 GBS-SNPs into Kompetitive allele specific polymerase chain reaction (KASP) markers. Two of them tightly linked to Cmc4 were validated to be highly diagnostic in a US winter wheat population and can be used for marker-assisted breeding for incorporation of Cmc4 into new wheat cultivars
Mulberry based zinc nano-particles mitigate salinity induced toxic effects and improve the grain yield and zinc bio-fortification of wheat by improving antioxidant activities, photosynthetic performance, and accumulation of osmolytes and hormones
Salinity stress (SS) is a challenging abiotic stress that limits crop growth and productivity. Sustainable and cost effective methods are needed to improve crop production and decrease the deleterious impacts of SS. Zinc (Zn) nanoparticles (NPs) have emerged as an important approach to regulating plant tolerance against SS. However, the mechanisms of SS tolerance mediated by Zn-NPs are not fully explained. Thus, this study was performed to explore the role of Zn-NPs (seed priming and foliar spray) in reducing the deleterious impacts of SS on wheat plants. The study comprised different SS levels: control, 6 and 12 dS m−1, and different Zn-NPs treatments: control, seed priming (40 ppm), foliar spray (20 ppm), and their combination. Salinity stress markedly reduced plant growth, biomass, and grain yield. This was associated with enhanced electrolyte leakage (EL), malondialdehyde (MDA),
hydrogen peroxide (H2O2), sodium (Na), chloride (Cl) accumulation, reduced photosynthetic pigments, relative water contents (RWC), photosyntetic rate (Pn), transpiration rate (Tr), stomata conductance (Gs), water use efficiency (WUE), free amino acids (FAA), total soluble protein (TSP), indole acetic acid (IAA), gibberellic acid (GA), and nutrients (Ca, Mg, K, N, and P). However, the application of Zn-NPs significantly improved the yield of the wheat crop, which was associated with reduced abscisic acid (ABA), MDA, H2O2 concentration, and EL, owing to improved antioxidant activities, and an increase in RWC, Pn, Tr, WUE, and the accumulation of osmoregulating compounds (proline, soluble sugars, TSP, and FAA) and hormones (GA and IAA). Furthermore, Zn-NPs contrasted the salinity-induced uptake of toxic ions (Na and Cl) and increased the uptake of Ca, K, Mg, N, and P. Additionally, Zn-NPs application substantially increased the wheat grain Zn bio-fortification. Our results support previous findings on the role of Zn-NPs in wheat growth, yield, and grain Zn bio-fortification, demonstrating that beneficial effects are obtained under normal as well as adverse conditions, thanks to improved physiological activity and the accumulation of useful compounds. This sets the premise for general use of Zn-NPs in wheat, to which aim more experimental evidence is intensively being sought. Further studies are needed at the genomic, transcriptomic, proteomic, and metabolomic level to better acknowledge the mechanisms of general physiological enhancement observed with Zn-NPs application
Elicitation of the in vitro Cultures of Selected Varieties of Vigna radiata L. With Zinc Oxide and Copper Oxide Nanoparticles for Enhanced Phytochemicals Production
This study was conducted to develop a protocol for in vitro shoot multiplication and callus induction of various mung bean varieties to obtain enhanced phytochemical content with the help of elicitors. For shoot multiplication, two types of explants (shoot tips and nodal tips) of three varieties of mung bean (Mung NCM-13, MgAT-7, and MgAT-4) were used. Both types of explants from in vitro and in vivo sources were cultured on the MS medium supplemented with different concentrations (0.25–3.0 mg/L, increment of 0.5 mg/L) and combinations of BAP and IBA as independent treatments. For callus induction, leaf explants (in vitro source) were cultured on MS medium supplemented with 2,4-D (1–3 mg/L) alone or in combination with BAP or NAA (0.5 and 1.0 mg/L). For the enhanced production of phenolics and glycosides, calli were cultured on MS media supplemented with zinc oxide (0.5 mg/L) and copper oxide nanoparticles (0.5 mg/L) as nano-elicitors. Results showed that in vitro explants responded better in terms of shoot length, number of shoots, and number of leaves per explant when compared to in vivo explants. Moreover, shoot tips were better than nodal explants to in vitro culturing parameters. All three varieties showed the optimized results in the MS medium supplemented with 1 mg/L BAP, while roots were produced only in cultures fortified with 1 mg/L IBA. The leaf explants of in vitro and soil-grown plantlets showed a maximum callogenic response of 90 and 80%, respectively, on MS medium supplemented with 2,4-D (3 mg/ml). Maximum phenolic content (101.4 μg of gallic acid equivalent/g) and glycoside content (34 mg of amygdalin equivalent/g of plant material) was observed in the calli cultured on MS medium supplemented with 3 mg/L of 2,4-D. Furthermore, the addition of zinc oxide (0.5 mg/L) and copper oxide (0.5 mg/L) nanoparticles to the callus culture medium significantly enhanced the phenolic content of Mung NCM-13 (26%), MgAT-7 (25.6%), and MgAT-4 (22.7%). Glycosidic content was also found to be increased in Mung NCM-13 (50%), MgAT-7 (37.5%), and MgAT-4 (25%) varieties when compared to the control. It is suggested that elicitation of in vitro cultures of mung beans with nanoparticles could be an effective strategy for the enhanced production of secondary metabolites
Phycochemical and Biological Activities From Different Extracts of Padina antillarum (Kützing) Piccone
Seaweeds are non-vascular, photosynthetic that inhabit the coastal regions commonly within rocky intertidal or submerged reef-like habitats and have been one of the richest and most promising sources of bioactive primary and secondary metabolites with antimicrobial properties. They selectively absorb elements like Na, K, Ca, Mg, I, and Br from the seawater and accumulate them in their thalli. Padina antillarum (Kützing) Piccone is a member of Phaeophycota and has remarkable phycochemistry as well as bioactivity. The phycochemical tests of the different extracts showed the presence of alkaloids, terpenoids, saponins, tannins, steroids, and phenols. The relative percentage of Oxirane, tetradecyl (C16H32O), and Cyclononasiloxane (C18H54O9Si9) are higher while Tetrasiloxane (C16H50O7Si8) is lowest in Gas Chromatography – Mass Spectrometry analysis. FRAP, %inhibition, the total antioxidant value of P. antillarum was higher in methanolic extract. Hexane, chloroform extracts showed no zone of inhibition against Bacillus subtilis, Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus, and Staphylococcus epidermidis. The methanolic extract of P. antillarum exhibits a maximum zone of inhibition against S. epidermidis (18.66 ± 0.09). Antifungal activity of the P. antillarum in hexane extract exhibited no zone of inhibition against Aspergillus niger and Penicillium notatum while the chloroform extract yields maximum zone (37 ± 0.012, 21.66 ± 0.03). Diabetes mellitus is one of the most familiar chronic diseases associated with carbohydrate metabolism. It is also an indication of co-morbidities such as obesity, hypertension, and hyperlipidemia which are metabolic complications of both clinical and experimental diabetes. The treatment of P. antillarum methanol extract in mice reduced the body weight loss, low level of triglycerides, and elevated HDL cholesterol level as compared to diabetic mice
COVID-19, deforestation, and green economy
Corona has severely impacted many sectors in the past 2. 5 years, and forests are one of the major hits among all sectors affected by the pandemic. This study presents the consolidated data on deforestation patterns across the globe during COVID and also analyzes in depth the region-specific contributing factors. Exacerbated deforestation during COVID alarms biodiversity conservation concerns and pushes back the long-term efforts to combat pollution and climate change mitigation. Deforestation also increases the risk of the emergence of new zoonotic diseases in future, as deforestation and COVID are intricately related to each other. Therefore, there is a need to check deforestation and inculcation of conservation measures in building back better policies adopted post-COVID. This review is novel in specifically providing insight into the implications of COVID-19 on forests in tropical as well as temperate global regions, causal factors, green policies given by different nations, and recommendations that will help in designing nature-based recovery strategies for combating deforestation and augmenting afforestation, thus providing better livelihood, biodiversity conservation, climate change mitigation, and better environmental quality
Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries
Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely
Quantitative and Qualitative Genetic Studies of Some Acacia Species Grown in Egypt
The objective of the current work is to study the genetic differentiation between Acacia species growing in Egypt as plant genetic resources based on morphological, biochemical, and molecular markers. The 20 replicates of Acacia tree collected from four localities from Egypt were A. tortilis ssp. raddiana and A. farnesiana (Siwa Oasis and Borg El-Arab City), A. stenophylla, A. sclerosperma (Marsa Matroh City), and A. saligna (Abis Station Farm, Alexandria). The results based on the previous markers indicated highly significant differences between Acacia species, confirming the hypothesis of the possibility of using morphological, biochemical, and molecular parameters in species identification. Qualitative characteristics results indicated some similarities and differences that are taxonomically important for comparing taxonomical grouping with morphological data for the genetic description of Acacia species. The activities of antioxidant enzymes have been studied intensively and the results provide strong similarities between the Acacia species (69%), between A. raddiana (Siwa and Borg Al-Arab) and A. saligna, followed by all Acacia species (50%). Finally, the molecular studies showed that a total of 563 amplification fragments, 190 fragments were monomorphic, and 373 fragments were polymorphic. The highest number of amplification fragments (21) was detected with OPB-20 primer, while OPA-20 showed seven amplification fragments; the average number was 13.09. The results indicated that Acacia species exhibit high genetic differentiation, helpful in the future for genetic improvement programs. The novelty of the current study is highlighting the importance of plant genetic resources in Egypt and using different techniques to measure the differentiation between these species
Biocontrol potential of endophytic fungi against phytopathogenic nematodes on potato (Solanum tuberosum L.)
Abstract Root-knot nematodes (RKNs) are a vital pest that causes significant yield losses and economic damage to potato plants. The use of chemical pesticides to control these nematodes has led to environmental concerns and the development of resistance in the nematode populations. Endophytic fungi offer an eco-friendly alternative to control these pests and produce secondary metabolites that have nematicidal activity against RKNs. The objective of this study is to assess the efficacy of Aspergillus flavus (ON146363), an entophyte fungus isolated from Trigonella foenum-graecum seeds, against Meloidogyne incognita in filtered culture broth using GC–MS analysis. Among them, various nematicidal secondary metabolites were produced: Gadoleic acid, Oleic acid di-ethanolamide, Oleic acid, and Palmitic acid. In addition, biochemical compounds such as Gallic acid, Catechin, Protocatechuic acid, Esculatin, Vanillic acid, Pyrocatechol, Coumarine, Cinnamic acid, 4, 3-indol butyl acetic acid and Naphthyl acetic acid by HPLC. The fungus was identified through morphological and molecular analysis, including ITS 1–4 regions of ribosomal DNA. In vitro experiments showed that culture filtrate of A. flavus had a variable effect on reducing the number of egg hatchings and larval mortality, with higher concentrations showing greater efficacy than Abamectin. The fungus inhibited the development and multiplication of M. incognita in potato plants, reducing the number of galls and eggs by 90% and 89%, respectively. A. flavus increased the activity of defense-related enzymes Chitinas, Catalyse, and Peroxidase after 15, 45, and 60 days. Leaching of the concentrated culture significantly reduced the second juveniles’ stage to 97% /250 g soil and decreased the penetration of nematodes into the roots. A. flavus cultural filtrates via soil spraying improved seedling growth and reduced nematode propagation, resulting in systemic resistance to nematode infection. Therefore, A. flavus can be an effective biological control agent for root-knot nematodes in potato plants. This approach provides a sustainable solution for farmers and minimizes the environmental impact
CRISPR/Cas9 Mediated Knockout of the OsbHLH024 Transcription Factor Improves Salt Stress Resistance in Rice (Oryza sativa L.)
Salinity stress is one of the most prominent abiotic stresses that negatively affect crop production. Transcription factors (TFs) are involved in the absorption, transport, or compartmentation of sodium (Na+) or potassium (K+) to resist salt stress. The basic helix–loop–helix (bHLH) is a TF gene family critical for plant growth and stress responses, including salinity. Herein, we used the CRISPR/Cas9 strategy to generate the gene editing mutant to investigate the role of OsbHLH024 in rice under salt stress. The A nucleotide base deletion was identified in the osbhlh024 mutant (A91). Exposure of the A91 under salt stress resulted in a significant increase in the shoot weight, the total chlorophyll content, and the chlorophyll fluorescence. Moreover, high antioxidant activities coincided with less reactive oxygen species (ROS) and stabilized levels of MDA in the A91. This better control of oxidative stress was accompanied by fewer Na+ but more K+, and a balanced level of Ca2+, Zn2+, and Mg2+ in the shoot and root of the A91, allowing it to withstand salt stress. Furthermore, the A91 also presented a significantly up-regulated expression of the ion transporter genes (OsHKT1;3, OsHAK7, and OsSOS1) in the shoot when exposed to salt stress. These findings imply that the OsbHLH024 might play the role of a negative regulator of salt stress, which will help to understand better the molecular basis of rice production improvement under salt stress
Increase maize productivity and water use efficiency through application of potassium silicate under water stress
Abstract In Egypt, water shortage has become a key limiting factor for agriculture. Water-deficit stress causes different morphological, physiological, and biochemical impacts on plants. Two field experiments were carried out at Etay El-Baroud Station, El-Beheira Governorate, Agriculture Research Center (ARC), Egypt, to evaluate the effect of potassium silicate (K-silicate) of maize productivity and water use efficiency (WUE). A split-plot system in the four replications was used under three irrigation intervals during the 2017 and 2018 seasons. Whereas 10, 15, and 20 days irrigation intervals were allocated in main plots, while the three foliar application treatments of K-silicate (one spray at 40 days after sowing; two sprays at 40 and 60 days; and three sprays at 40, 60, and 80 days, and a control (water spray) were distributed in the subplots. All the treatments were distributed in 4 replicates. The results indicated that irrigation every 15 days gave the highest yield in both components and quality. The highly significant of (WUE) under irrigation every 20 days. Foliar spraying of K-silicate three times resulted in the highest yield. Even under water-deficit stress, irrigation every fifteen days combined with foliar application of K-silicate three times achieved the highest values of grain yield and its components. These results show that K-silicate treatment can increase WUE and produce high grain yield requiring less irrigation