36 research outputs found

    Application of the ANOVA method in the optimization of a thermoelectric cooler-based dehumidification system

    Get PDF
    © 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).In recent studies, Thermo-Electric Coolers (TEC) have been utilized for dehumidification purposes, which is mainly based on the extraction of moisture from humid atmospheric air. The reviewed literature showed that the rate of water collection from the TEC-based system can be affected by various parameters such as the module’s input voltage, the heat sink orientation, and tilt angles. In this research, the analysis of variance (ANOVA) was used to examine the significance of these factors and their interaction within the system on the TEC-based dehumidification system. Four levels were investigated for both, the Peltier’s input voltage and the rotation angle, and three levels for the tilt angle. This study indicated the significance of the studied factors and their interactions within the dehumidification system along with performing an overall numerical optimization. The experiments were conducted under the same working conditions in an enclosed environment to minimize errors. According to the overall numerical optimization, which was validated experimentally, the optimum system performance was predicted to be obtained at approximately 6.8V Peltier input volt, 65° rotation angle, and 90° tilt angles, with predicted optimum productivities of 0.32278 L/kWh and 13.03 mL/hr. For the same set of parameters, the variation between the experiment and the numerical optimization was less than 4%. The experiments show that when optimizing water collection rates for thermoelectric cooling heat sinks​ under high humidity conditions, the orientation of the heat sink should be considered.Peer reviewe

    Thermohydraulic analysis of covalent and noncovalent functionalized graphene nanoplatelets in circular tube fitted with turbulators

    Get PDF
    © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Covalent and non-covalent nanofluids were tested inside a circular tube fitted with twisted tape inserts with 45° and 90° helix angles. Reynolds number was 7000 ≤ Re ≤ 17,000, and thermophysical properties were assessed at 308 K. The physical model was solved numerically via a two-equation eddy-viscosity model (SST k-omega turbulence). GNPs-SDBS@DW and GNPs-COOH@DW nanofluids with concentrations (0.025 wt.%, 0.05 wt.% and 0.1 wt.%) were considered in this study. The twisted pipes' walls were heated under a constant temperature of 330 K. The current study considered six parameters: outlet temperature, heat transfer coefficient, average Nusselt number, friction factor, pressure loss, and performance evaluation criterion. In both cases (45° and 90° helix angles), GNPs-SDBS@DW nanofluids presented higher thermohydraulic performance than GNPs-COOH@DW and increased by increasing the mass fractions such as 1.17 for 0.025 wt.%, 1.19 for 0.05 wt.% and 1.26 for 0.1 wt.%. Meanwhile, in both cases (45° and 90° helix angles), the value of thermohydraulic performance using GNPs-COOH@DW was 1.02 for 0.025 wt.%, 1.05 for 0.05 wt.% and 1.02 for 0.1 wt.%.Peer reviewe

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    A new approach to evaluate the impact of thermophysical properties of nanofluids on heat transfer and pressure drop

    No full text
    In this paper, an experimental and numerical study was conducted to evaluate the impacts of momentum and thermal diffusivity comparing to the thermal conductivity of various types of nanofluids on turbulent forced convection heat transfer. 1%, 2%, and 3% volumetric concentrations of different nanofluids such as Al2O3-DW, SiO2-DW, and Cu-DW were considered in this study and their properties were evaluated numerically at the flow inlet temperature of 30 °C. The experimental works were conducted with distilled water as a working fluid to validate the 2-D numerical model. A two-dimensional domain was constructed using ANSYS-Fluent package, and the standard k–ε turbulence model was employed to solve the continuity, momentum, and energy equations. The flow was maintained in the Reynolds range between 6000 and 12,000, and the data obtained experimentally were validated by results from empirical correlations. The numerical solutions for the average Nusselt number and pressure drop presents a good agreement with the experimental results as the average error was less than 5% for both the cases of heat transfer and pressure loss data. The results showed that Al2O3-DW nanofluid has the best enhancement in convection heat transfer coefficient compared with the DW and other nanofluids of the same concentration while Cu-DW nanofluids shown the lowest enhancement though it shown the highest value of thermal conductivity. Also, the results showed that the product of kinematic and dynamic viscosities had the greatest effect on pressure drop in the fluid domain

    Thermal hysteresis analysis of finned-heat-pipe-assisted latent heat thermal energy storage application for solar water heater system

    No full text
    This work numerically investigates the performance of an innovative compact-design solar water heater (SWH) using evacuated tube heat pipe solar collectors (ETHPSCs) coupled with a latent heat storage tank (LHS tank). This system is thought to be an unwritten fourth generation of solar water heaters known as heat-pipe-assisted thermal batteries. The basic and explicit hypothesis is to store energy than a bulk of hot water, which is the key distinction in compared to the prior classical sorts. Using three phase change materials (PCMs) for high and low solar intensity categories in the tropical region of South East Asia, a computational effort is conducted to model the system and the given temperature headed for the supply output hot water. This research is validated by two interrelated experimental and analytical investigations. According to the results of 12-h charging (melting) process, the maximum mean temperature of the PCMs belongs to PCM C, Rubitherm (RT70HC), which indicates 101 °C during the defined typical high daily solar radiation. This value implies 2.02% error in compared to the reference study. Referring to the solid-liquid interface parameter, the maximum liquefied thickness is also for PCM C with 76 mm thickness. However, reaching the complete melting is required by further studies

    A facile, bio-based, novel approach for synthesis of covalently functionalized graphene nanoplatelet nano-coolants toward improved thermo-physical and heat transfer properties

    No full text
    In this study, we synthesized covalently functionalized graphene nanoplatelet (GNP) aqueous suspensions that are highly stable and environmentally friendly for use as coolants in heat transfer systems. We evaluated the heat transfer and hydrodynamic properties of these nano-coolants flowing through a horizontal stainless steel tube subjected to a uniform heat flux at its outer surface. The GNPs functionalized with clove buds using the one-pot technique. We characterized the clove-treated GNPs (CGNPs) using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). We then dispersed the CGNPs in distilled water at three particle concentrations (0.025, 0.075 and 0.1 wt%) in order to prepare the CGNP-water nanofluids (nano-coolants). We used ultraviolet–visible (UV–vis) spectroscopy to examine the stability and solubility of the CGNPs in the distilled water. There is significant enhancement in thermo-physical properties of CGNPs nanofluids relative those for distilled water. We validated our experimental set-up by comparing the friction factor and Nusselt number for distilled water obtained from experiments with those determined from empirical correlations, indeed, our experimental set-up is reliable and produces results with reasonable accuracy. We conducted heat transfer experiments for the CGNP-water nano-coolants flowing through the horizontal heated tube in fully developed turbulent condition. Our results are indeed promising since there is a significant enhancement in the Nusselt number and convective heat transfer coefficient for the CGNP-water nanofluids, with only a negligible increase in the friction factor and pumping power. More importantly, we found that there is a significant increase in the performance index, which is a positive indicator that our nanofluids have potential to substitute conventional coolants in heat transfer systems because of their overall thermal performance and energy savings benefits

    Deep clustering of cooperative multi-agent reinforcement learning to optimize multi chiller HVAC systems for smart buildings energy management

    No full text
    © 2022 Elsevier Ltd. All rights reserved. All rights reserved. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1016/j.jobe.2022.105689Chillers are responsible for almost half of the total energy demand in buildings. Hence, the obligation of control systems of multi-chiller due to changes indoor environments is one of the most significant parts of a smart building. Such a controller is described as a nonlinear and multi-objective algorithm, and its fabrication is crucial to achieving the optimal balance between indoor thermal comfort and running a minimum number of chillers. This work proposes deep clustering of cooperative multi-agent reinforcement learning (DCCMARL) as well-suited to such system control, which supports centralized control by learning of agents. In MARL, since the learning of agents is based on discrete sets of actions and stats, this drawback significantly affects the model of agents for representing their actions with efficient performance. This drawback becomes considerably worse when increasing the number of agents, due to the increased complexity of solving MARL, which makes modeling policy very challenging. Therefore, the DCCMARL of multi-objective reinforcement learning is leveraging powerful frameworks of a hybrid clustering algorithm to deal with complexity and uncertainty, which is a critical factor that influences to the achievement of high levels of a performance action. The results showed that the ability of agents to manipulate the behavior of the smart building could improve indoor thermal conditions, as well as save energy up to 44.5% compared to conventional methods. It seems reasonable to conclude that agents' performance is influenced by what type of model structure.Peer reviewe

    Heat transfer and hydrodynamic properties using different metal-oxide nanostructures in horizontal concentric annular tube : An optimization study

    No full text
    Numerical studies were performed to estimate the heat transfer and hydrodynamic properties of a forced convection turbulent flow using three-dimensional horizontal concentric annuli. This paper applied the standard k–ε turbulence model for the flow range 1 × 104 ≤ Re ≥ 24 × 103. A wide range of parameters like different nanomaterials (Al2O3, CuO, SiO2 and ZnO), different particle nanoshapes (spherical, cylindrical, blades, platelets and bricks), different heat flux ratio (HFR) (0, 0.5, 1 and 2) and different aspect ratios (AR) (1.5, 2, 2.5 and 3) were examined. Also, the effect of inner cylinder rotation was discussed. An experiment was conducted out using a field-emission scanning electron microscope (FE-SEM) to characterize metallic oxides in spherical morphologies. Nano-platelet particles showed the best enhancements in heat transfer properties, followed by nano-cylinders, nano-bricks, nano-blades, and nano-spheres. The maximum heat transfer enhancement was found in SiO2, followed by ZnO, CuO, and Al2O3, in that order. Meanwhile, the effect of the HFR parameter was insignificant. At Re = 24,000, the inner wall rotation enhanced the heat transfer about 47.94%, 43.03%, 42.06% and 39.79% for SiO2, ZnO, CuO and Al2O3, respectively. Moreover, the AR of 2.5 presented the higher heat transfer improvement followed by 3, 2, and 1.5

    Controversies and evidence gaps in the early management of severe traumatic brain injury: back to the ABCs

    No full text
    Traumatic brain injury (TBI) accounts for around 30% of all trauma-related deaths. Over the past 40 years, TBI has remained a major cause of mortality after trauma. The primary injury caused by the injurious mechanical force leads to irreversible damage to brain tissue. The potentially preventable secondary injury can be accentuated by addressing systemic insults. Early recognition and prompt intervention are integral to achieve better outcomes. Consequently, surgeons still need to be aware of the basic yet integral emergency management strategies for severe TBI (sTBI). In this narrative review, we outlined some of the controversies in the early care of sTBI that have not been settled by the publication of the Brain Trauma Foundation’s 4th edition guidelines in 2017. The topics covered included the following: mode of prehospital transport, maintaining airway patency while securing the cervical spine, achieving adequate ventilation, and optimizing circulatory physiology. We discuss fluid resuscitation and blood product transfusion as components of improving circulatory mechanics and oxygen delivery to injured brain tissue. An outline of evidence-based antiplatelet and anticoagulant reversal strategies is discussed in the review. In addition, the current evidence as well as the evidence gaps for using tranexamic acid in sTBI are briefly reviewed. A brief note on the controversial emergency surgical interventions for sTBI is included. Clinicians should be aware of the latest evidence for sTBI. Periods between different editions of guidelines can have an abundance of new literature that can influence patient care. The recent advances included in this review should be considered both for formulating future guidelines for the management of sTBI and for designing future clinical studies in domains with clinical equipoise
    corecore