193 research outputs found

    Detection of Iron in Nanoclustered Cytochrome C Proteins Using Nitrogen-Vacancy Magnetic Relaxometry

    Full text link
    Nitrogen-vacancy (NV) magnetometry offers an alternative tool to detect iron levels in neurons and cells with a favorable combination of magnetic sensitivity and spatial resolution. Here we employ NV-T1 relaxometry to detect Fe in cytochrome C (Cyt-C) nanoclusters. Cyt-C is a water-soluble protein that contains a single heme group and plays a vital role in the electron transport chain of mitochondria. Under ambient conditions, the heme group remains in the Fe+3 paramagnetic state. We perform NV-T1 relaxometry on a functionalized diamond chip and vary the concentration of Cyt-C from 6 uM to 54 uM, resulting in a decrease of T1 from 1.2 ms to 150 us, respectively. This reduction is attributed to spin-noise originating from the Fe spins present within the Cyt-C. We perform relaxometry imaging of Cyt-C proteins on a nanostructured diamond chip by varying the density of adsorbed iron from 1.44 x 10^6 to 1.7 x 10^7 per um^2

    Quantitative assessment of the stent/scaffold strut embedment analysis by optical coherence tomography

    Get PDF
    The degree of stent/scaffold embedment could be a surrogate parameter of the vessel wall-stent/scaffold interaction and could have biological implications in the vascular response. We have developed a new specific software for the quantitative evaluation of embedment of struts by optical coherence tomography (OCT). In the present study, we described the algorithm of the embedment analysis and its reproducibility. The degree of embedment was evaluated as the ratio of the embedded part versus the whole strut height and subdivided into quartiles. The agreement and the inter- and intra-observer reproducibility were evaluated using the kappa and the interclass correlation coefficient (ICC). A total of 4 pullbacks of OCT images in 4 randomly selected coronary lesions with 3.0 × 18 mm devices [2 lesions with Absorb BVS and 2 lesions with XIENCE (both from Abbott Vascular, Santa Clara, CA, USA)] from Absorb Japan trial were evaluated by two investigators with QCU-CMS software version 4.69 (Leiden University Medical Center, Leiden, The Netherlands). Finally, 1481 polymeric struts in 174 cross-sections and 1415 metallic struts in 161 cross-sections were analyzed. Inter- and intra-observer reproducibility of quantitative measurements of embedment ratio and categorical asses

    Actinopolyspora algeriensis sp. nov., a novel halophilic actinomycete isolated from a Saharan soil

    Get PDF
    A halophilic actinomycete strain designated H19T, was isolated from a Saharan soil in the Bamendil region (Ouargla province, South Algeria) and was characterized taxonomically by using a polyphasic approach. The morphological and chemotaxonomic characteristics of the strain were consistent with those of members of the genus Actinopolyspora, and 16S rRNA gene sequence analysis confirmed that strain H19T was a novel species of the genus Actinopolyspora. DNA–DNA hybridization value between strain H19T and the nearest Actinopolyspora species, A. halophila, was clearly below the 70 % threshold. The genotypic and phenotypic data showed that the organism represents a novel species of the genus Actinopolyspora for which the name Actinopolyspora algeriensis sp. nov. is proposed, with the type strain H19T (= DSM 45476T = CCUG 62415T)

    Prevalence, predictors, and prognostic implications of residual impairment of functional capacity after transcatheter aortic valve implantation

    Get PDF
    Background: Patients with degenerative aortic stenosis (AS) referred for transcatheter aortic valve implantation (TAVI) typically have advanced cardiac and vascular adverse remodeling and multiple comorbidities and, therefore, might not recover a normal functional capacity after valve replacement. We sought to investigate the prevalence, the predictors, and the prognostic impact of residual impairment of functional capacity after TAVI. Methods and results: Out of 790 patients undergoing TAVI with impaired functional capacity (NYHA II–IV

    Development of industrially viable geopolymers from treated petroleum fly ash

    Get PDF
    This paper investigates the development of stable geopolymers using petroleum fly ash with high compressive strength and water absorption to promote cleaner production, sustainability, and recycling of waste. The paper provided detailed characterizations of the petroleum fly ash, which involved the determination of the particle size diameter, density, surface area, pore-volume, mineralogical identification of recording X-ray diffraction pattern, X-ray fluorescence, Fourier transform infrared, thermogravimetric analysis, and scanning electron microscope. Moreover, metals leachability from the petroleum fly ash using different extracting agents, namely H2SO4, H3PO4, (NH4)2SO4, NH4NO3, and NH4O2CCO2H was also considered. Five geopolymers were prepared using different amounts of petroleum fly ash to assess the influence of petroleum fly ash on the final performance of the prepared geopolymers. The results revealed that the petroleum fly ash was carbonaceous in nature and rich in vanadium oxide and nickel oxide with low in SiO2 and Al2O3. Furthermore, it was found that petroleum fly ash has a low calcium level. The maximum extraction values were 15.6% for V and 55.6% for Ni using H2SO4. All the prepared geopolymers displayed high compressive strength for longer curing times, and the water absorption properties of all geopolymers were improved by incorporating more petroleum fly ash. Increasing the petroleum fly ash from 0 vol% to 61 vol% increased the water absorption value from 6.6 to 13.3 wt% for the samples collected after 28 days of curing. It was concluded that the petroleum fly ash did tend to form successful stable geopolymers with high compressive strength and water absorption.Scopu

    High Prevalence of Extended-Spectrum Beta Lactamases among Salmonella enterica Typhimurium Isolates from Pediatric Patients with Diarrhea in China

    Get PDF
    We investigated the extended-spectrum beta lactamases among 62 Salmonella enterica Typhimurium isolates recovered from children with diarrhea in a Chinese pediatric hospital. A large proportion of S. enterica Typhimurium isolates were resistant to multiple antimicrobial agents, including ampicillin (90.3%), tetracycline (80.6%), trimethoprim/sulfamethoxazole (74.2%), chloramphenicol (66.1%), cefotaxime (27.4%). Forty-nine (79.0%) of S. enterica Typhimurium isolates were positive for blaTEM-1b and resistant to ampicillin. Thirteen S. enterica Typhimurium isolates (21.0%) were positive for blaCTX-M-1-group and blaCTX-M-9-group, and all isolates harboring blaCTX-M genes were positive for ISEcp1. Two main clones (PFGE type A and D) accounted for nearly 70% of S. enterica Typhimurium isolates, and 7 CTX-M-producing isolates belonged to PFGE type D. Collectively, our data reveal multi-drug resistance and a high prevalence of extended spectrum beta lactamases among S. enterica Typhimurium isolates from children in China. In addition, we report the first identification of blaCTX-M-55 within Salmonella spp. Our data also suggest that clonal spread is responsible for the dissemination of S. enterica Typhimurium isolates

    Saccharothrix sp. PAL54, a new chloramphenicol-producing strain isolated from a Saharan soil

    Get PDF
    An actinomycete strain designated PAL54, producing an antibacterial substance, was isolated from a Saharan soil in Ghardaïa, Algeria. Morphological and chemical studies indicated that this strain belonged to the genus Saccharothrix. Analysis of the 16S rDNA sequence showed a similarity level ranging between 96.9 and 99.2% within Saccharothrix species, with S. longispora DSM 43749T, the most closely related. DNA–DNA hybridization confirmed that strain PAL54 belonged to Saccharothrix longispora. It showed very strong activity against pathogenic Gram-positive and Gram-negative bacteria responsible for nosocomial infections and resistant to multiple antibiotics. Strain PAL54 secreted the antibiotic optimally during mid-stationary and decline phases of growth. One antibacterial compound was isolated from the culture broth and purified by HPLC. The active compound was elucidated by uv-visible and NMR spectroscopy and by mass spectrometry. The results showed that this compound was a D(-)-threo chloramphenicol. This is the first report of chloramphenicol production by a Saccharothrix species

    The Tissue-Specific Rep8/UBXD6 Tethers p97 to the Endoplasmic Reticulum Membrane for Degradation of Misfolded Proteins

    Get PDF
    The protein known as p97 or VCP in mammals and Cdc48 in yeast is a versatile ATPase complex involved in several biological functions including membrane fusion, protein folding, and activation of membrane-bound transcription factors. In addition, p97 plays a central role in degradation of misfolded secretory proteins via the ER-associated degradation pathway. This functional diversity of p97 depends on its association with various cofactors, and to further our understanding of p97 function it is important that these cofactors are identified and analyzed. Here, we isolate and characterize the human protein named Rep8 or Ubxd6 as a new cofactor of p97. Mouse Rep8 is highly tissue-specific and abundant in gonads. In testes, Rep8 is expressed in post-meiotic round spermatids, whereas in ovaries Rep8 is expressed in granulosa cells. Rep8 associates directly with p97 via its UBX domain. We show that Rep8 is a transmembrane protein that localizes to the ER membrane with its UBX domain facing the cytoplasm. Knock-down of Rep8 expression in human cells leads to a decreased association of p97 with the ER membrane and concomitantly a retarded degradation of misfolded ER-derived proteasome substrates. Thus, Rep8 tethers p97 to the ER membrane for efficient ER-associated degradation
    corecore