351 research outputs found

    Five-Phase Modular External Rotor PM Machines with Different Rotor Poles: A Comparative Simulation Study

    Get PDF
    The performance of fault-tolerant modular permanent magnet machines depends on the proper selection of the pole and slot numbers which result in negligible coupling between phases. The preferred slot and pole number combinations eliminate the effect of low-order harmonics in the stator magnetomotive force and thereby the vibration and stray loss are reduced. In this paper, three external rotor machines with identical machine dimensions are designed with different slots per phase per pole ratios. A simulation study is carried out using finite element analysis to compare the performance of the three machines in terms of machine torque density, ripple torque, core loss, and machine efficiency. A mathematical model based on the conventional-phase-model approach is also used for the comparative study. The simulation study is extended to depict machine performance under fault conditions

    Studying the effect of over-modulation on the output voltage of three-phase single-stage grid-connected boost inverter

    Get PDF
    AbstractVoltage boosting is very essential issue in renewable-energy fed applications. The classical two-stage power conversion process is typically used to interface the renewable energy sources to the grid. For better efficiency, single-stage inverters are recommended. In this paper, the performance of single-stage three-phase grid-connected boost inverter is investigated when its gain is extended by employing over-modulation technique. Using of over-modulation is compared with the employment of third order harmonic injection. The latter method can increase the inverter gain by 15% without distorting the inverter output voltage. The performance of extended gain grid-connected boost inverter is also tested during normal operation as well as in the presence of grid side disturbances. Simulation and experimental results are satisfactory

    A current-source-converter-based PMSG wind energy conversion system: simulation study

    Get PDF

    A current-source-converter-based PMSG wind energy conversion system: simulation study

    Get PDF

    A ring-connected dual active bridge based DC-DC multiport converter for EV fast-charging stations

    Get PDF
    This paper proposes a multiport DC-DC converter for EV fast-charging stations. The proposed converter is comprised of Ring-Connected Dual Active Bridge (RCDAB) DC-DC converters, where the connection point between every two adjacent DABs provides a DC port. Bypass switches are added to each DAB to eliminate unnecessary power processing stages in the event of idle ports (no EVs) (open circuit ports). The nature of the ring connection of the RCDAB theoretically allows infinite internal power flow solutions within the ring to satisfy a certain power flow scenario at the DC ports, hence, the optimal power flow solution can be selected to minimize total RMS current and losses. Single-phase shift control is applied to this optimization problem to make it simple. A novel closed-loop control scheme using Bisection optimization is developed to minimize the total RMS current. A control-hardware-in-the-loop (CHiL) validation is carried out for a 5-port network of the proposed topology to investigate the converter efficiency and fault tolerance/availability characteristics. Also, an experimental hardware validation is implemented for a 3-port network where different scenarios for power flow and faults are performed. Finally, a comparative discussion between the proposed topology and other multiport topologies in literature is presented revealing the superior performance of the RCDAB topology

    Traction system with on-board inductive power transfer

    Get PDF
    In traction applications based on long primary and short secondary type, contactless electrical energy transmission can offer distinct advantages over the conventional energy transmission based on catenary system to provide the required on-board power. In this paper, a linear brushless doubly fed machine with dual-primary windings and a reluctance secondary mover is proposed as a means of providing decoupled traction and on-board power. The machine primary contains two three-phase windings with different number of poles while an additional third winding is added around rotor saliencies forming a third output electric port to provide the required on-board power. A prototype machine is designed and simulated using 2D finite element analysis to verify the proposed concept.Qatar National Research FundScopu

    Single-Phase Charging of Six-Phase Integrated On-Board Battery Charger using Predictive Current Control

    Get PDF
    This work was achieved by the financial support of ITIDAs ITAC collaborative funded project under the category type of advanced research projects (ARP) and Grant Number ARP2020.R29.7.This work was achieved by the financial support of ITIDAs ITAC collaborative funded project under the category type of advanced research projects (ARP) and Grant Number ARP2020.R29.7.Integrated On-Board Battery Chargers (IOBCs) have shown promise as an elegant charging solution for electric vehicles in recent literature. Although the three-phase charging technique of IOBCs has extensively been discussed in the literature, single-phase charging is still a challenging research topic. The Predictive Current Control (PCC) approach has shown many benefits, including a straightforward algorithm, simple implementation, comparatively quick response, and appropriate performance, when compared to conventional control techniques. This paper investigates the impact of single-phase charging of a six-phase-based IOBC system with different winding configurations using PCC, which, up to the best authors’ knowledge, has not been conceived thus far. Under single-phase charging, the zero-sequence current component is utilized to ensure zero torque production during charging mode. Since the impedance of the zero subspace is highly affected by the employed winding design, the performance of PCC with different winding layouts of either induction machine (IM) or permanent magnet synchronous machine (PMSM) is investigated and compared. The proposed method is experimentally validated using a 1.1kW six-phase IM and a 2 kW 12-slot/10-pole PMSM. Finite Element analysis is also carried out to investigate the effect of single-phase charging mode on the induced radial forces and vibration level when PM machine is employed

    Multiport DC-DC converter with differential power processing for fast EV charging stations

    Get PDF
    With the growing interest in owning electric vehicles due to increased environmental awareness and uncertain energy security together with the development of Li-ion batteries, quietness, and trouble-free operation, it is urgent to develop charging stations that are fast enough to supply the vehicles with energy conveniently, as in case of conventional petrol stations. The main reason that hinders the spread of fast charging stations is the installation cost, comprising the infrastructure and converter costs. In this article, a multiport DC-DC converter with differential power processing stages is proposed for Electric Vehicle (EV) fast charging stations, which results in a considerable reduction in the cost of using converters while achieving high efficiency. The proposed topology consists of two paths for the power flow (outer and inner loops) for EV battery charging with main and auxiliary DC-DC converters in the outer loop; all the ports are connected in series with the main supply, where the bulk power is being transferred. The main DC-DC converter injects a series voltage to control the power in the outer loop. The auxiliary DC-DC converters are rated at a fractional power that controls the partial power supplied to each port through the inner loops. Thanks to the fractional power processed by the auxiliary converter with the remaining power fed to the battery through the main converter, the proposed architecture enables simultaneous charging of multiple electric vehicles with better efficiency, lower cost, and the capability of providing a fault tolerance feature. A PWM control scheme for the converters to achieve bi-directional power flow in the partially rated DC-DC converters is discussed for the proposed system. Moreover, a practical down-scaled hardware prototype is designed to validate the functionality, control scheme, and effectiveness of the proposed topology in different case studies being investigated. The efficiency of the proposed converter is compared to the conventional configuration

    Improved utilization for “smart parking systems” based on paging technique

    Get PDF
    Considering the rapid urbanization and the road congestion, the development of smart parking solutions becomes more crucial, especially in terms of economic interests. Thanks to IoT-connectivity and the cloud-integrated platforms, drivers can easily find a vacant parking lot with smart parking services. This paper intervenes in the profit of parking management systems. The paper proposes a new technique “paging technique” which increases the utilization factor of parking slots. The proposed method takes advantage of the idle time that exists between two successful parking services in the same slot. Besides, it investigates the possibility of using the idle times from different parking slots to provide a continuous parking time for an additional car. The paging technique is optimally implemented using mixed-integer linear programming that maximizes the utilization factor for the parking slots with minimum car transitions. Moreover, a data model for the parking management system has been constructed while considering the three major customers, namely, regular, prepaid, and walk-in customers. The difference between fixed and dynamic pricing for parking has been investigated. The technique has been validated using GAMS optimization software and hardware using DSP with Coin-or branch and cut solver (CBC) under real-life conditions. The statistical results prove that the revenue for the proposed parking system has increased significantly. Finally, a comparative analysis is performed, benchmarking our proposed method against recent competing algorithms in real world applications to demonstrate its superiority

    Performance evaluation of PI controlled series stacked power delivery architectures for high-efficiency data centers

    Get PDF
    Series-stacked architectures have been successfully deployed for data center applications at substantially higher efficiencies than conventional power delivery architectures. In the series-stacked architectures, servers are series-connected electrically to reduce the high step-down conversion stage of voltage utilized in the conventional architectures. Differential power processing converters are, therefore, used to regulate the servers’ voltages and compensate for the unpredicted mismatch between servers’ currents. The main contribution of this paper comprises novel control approaches based on PI controllers purposeful for the two architectures that have reported the highest reliability and efficiency in differential power processing namely: server-to-bus and server-to-virtual bus. Both systems employ a dual active bridge (DAB) converter to accommodate the fluctuating loads of each server. Unlike hysteresis current/voltage control commonly employed in the available literature, the proposed control approaches offer less complexity, lower harmonics, and higher immunity towards the noise, thus no need for high-quality sensors to successfully achieve voltage balance and/or optimal string current flow. Moreover, a comparative study has been structured between the investigated series-stacked architectures under the proposed PI control approaches showing the merits and the demerits of each architecture. The proposed controllers have been validated based on simulations and experimentally
    • …
    corecore