2,576 research outputs found

    NASA refan program status

    Get PDF
    The objective of the refan program is to demonstrate the technical feasibility of substantially reducing the noise levels of existing JT8D powered aircraft. The program consists of the design, manufacturing and testing of the refan engines and modified nacelles and airplanes. Experimental testing was completed for the refan engine both at sea level and at altitude conditions. Ground testing for the B727 side- and center-engine installations and flight testing of the DC-9 with refan engines and acoustic nacelles were performed. Preliminary results presented show that substantial noise reductions were achieved

    Pressure-rise Characteristics for a Liquid Hydrogen Dewar for Homogeneous, Normal Gravity Quiescent, and Zero Gravity Tests

    Get PDF
    Pressure rise characteristics of liquid hydrogen dewar for homogeneous, normal-gravity quiescent, and zero-gravity test

    Scalar field evolution in Gauss-Bonnet black holes

    Full text link
    It is presented a thorough analysis of scalar perturbations in the background of Gauss-Bonnet, Gauss-Bonnet-de Sitter and Gauss-Bonnet-anti-de Sitter black hole spacetimes. The perturbations are considered both in frequency and time domain. The dependence of the scalar field evolution on the values of the cosmological constant Λ\Lambda and the Gauss-Bonnet coupling α\alpha is investigated. For Gauss-Bonnet and Gauss-Bonnet-de Sitter black holes, at asymptotically late times either power-law or exponential tails dominate, while for Gauss-Bonnet-anti-de Sitter black hole, the quasinormal modes govern the scalar field decay at all times. The power-law tails at asymptotically late times for odd-dimensional Gauss-Bonnet black holes does not depend on α\alpha, even though the black hole metric contains α\alpha as a new parameter. The corrections to quasinormal spectrum due to Gauss-Bonnet coupling is not small and should not be neglected. For the limit of near extremal value of the (positive) cosmological constant and pure de Sitter and anti-de Sitter modes in Gauss-Bonnet gravity we have found analytical expressions.Comment: 10 pages, to be published in Phys. Rev.

    Quantum Electrodynamics in Two-Dimensions at Finite Temperature. Thermofield Bosonization Approach

    Full text link
    The Schwinger model at finite temperature is analyzed using the Thermofield Dynamics formalism. The operator solution due to Lowenstein and Swieca is generalized to the case of finite temperature within the thermofield bosonization approach. The general properties of the statistical-mechanical ensemble averages of observables in the Hilbert subspace of gauge invariant thermal states are discussed. The bare charge and chirality of the Fermi thermofields are screened, giving rise to an infinite number of mutually orthogonal thermal ground states. One consequence of the bare charge and chirality selection rule at finite temperature is that there are innumerably many thermal vacuum states with the same total charge and chirality of the doubled system. The fermion charge and chirality selection rules at finite temperature turn out to imply the existence of a family of thermal theta vacua states parametrized with the same number of parameters as in zero temperature case. We compute the thermal theta-vacuum expectation value of the mass operator and show that the analytic expression of the chiral condensate for any temperature is easily obtained within this approach, as well as, the corresponding high-temperature behavior

    Hilbert Space of Isomorphic Representations of Bosonized Chiral QCD2QCD_2

    Get PDF
    We analyse the Hilbert space structure of the isomorphic gauge non-invariant and gauge invariant bosonized formulations of chiral QCD2QCD_2 for the particular case of the Jackiw-Rajaraman parameter a=2 a = 2. The BRST subsidiary conditions are found not to provide a sufficient criterium for defining physical states in the Hilbert space and additional superselection rules must to be taken into account. We examine the effect of the use of a redundant field algebra in deriving basic properties of the model. We also discuss the constraint structure of the gauge invariant formulation and show that the only primary constraints are of first class.Comment: LaTeX, 19 page

    Observer dependent D-brane for strings propagating in pp-wave time dependent background

    Full text link
    We study type IIB superstring in the pp-wave time-dependent background, which has a singularity at t=0t=0. We show that this background can provide a toy model to study some ideas related to the stretched horizon paradigm and the complementary principle of black holes. To this end, we construct a unitary Bogoliubov generator which relates the asymptotically flat string Hilbert space, defined at t=±t =\pm \infty, to the finite time Hilbert space. For asymptotically flat observers, the closed string vacuum close to the singularity appears as a boundary state which is in fact a D-brane described in the closed string channel. However, observers who go with the string towards to the singularity see the original vacuum.Comment: 12 pages, revtex 4, added references, corrected mistake

    Non-Z2\mathbb{Z}_{2} symmetric braneworlds in scalar tensorial gravity

    Full text link
    We obtain, via the Gauss-Codazzi formalism, the expression of the effective Einstein-Brans-Dicke projected equations in a non-Z2\mathbb{Z}_{2} symmetric braneworld scenario which presents hybrid compactification. It is shown that the functional form of such equations resembles the one in the Einstein's case, except by the fact that they bring extra informations in the context of exotic compactifications.Comment: 12 pages, LATEX file, no figures. Accepted for publication in the European Physical Journal

    Superconducting Fluctuations in a Multi-Band 1D Hubbard Model

    Full text link
    A renormalization-group and bosonization approach for a multi-band Hubbard Hamiltonian in one dimension is described. Based on the limit of many bands, it is argued that this Hamiltonian with bare repulsive electron-electron interactions is scaled under specific conditions to a model in which superconducting fluctuations dominate.Comment: 12 pages + 1 fig, Revtex, Preprint - Los Alamo

    Brane World Cosmological Perturbations

    Full text link
    We consider a brane world and its gravitational linear perturbations. We present a general solution of the perturbations in the bulk and find the complete perturbed junction conditions for generic brane dynamics. We also prove that (spin 2) gravitational waves in the great majority of cases can only arise in connection with a non-vanishing anisotropic stress. This has far reaching consequences for inflation in the brane world. Moreover, contrary to the case of the radion, perturbations are stable.Comment: 16 pages, one figur

    Weak gravitational lensing with the Square Kilometre Array

    Get PDF
    We investigate the capabilities of various stages of the SKA to perform world-leading weak gravitational lensing surveys. We outline a way forward to develop the tools needed for pursuing weak lensing in the radio band. We identify the key analysis challenges and the key pathfinder experiments that will allow us to address them in the run up to the SKA. We identify and summarize the unique and potentially very powerful aspects of radio weak lensing surveys, facilitated by the SKA, that can solve major challenges in the field of weak lensing. These include the use of polarization and rotational velocity information to control intrinsic alignments, and the new area of weak lensing using intensity mapping experiments. We show how the SKA lensing surveys will both complement and enhance corresponding efforts in the optical wavebands through cross-correlation techniques and by way of extending the reach of weak lensing to high redshift.Comment: 19 pages, 6 figures. Cosmology Chapter, Advancing Astrophysics with the SKA (AASKA14) Conference, Giardini Naxos (Italy), June 9th-13th 201
    corecore