24 research outputs found

    Can constant light exposure affect the thyroid gland in prepubertal male albino rats? Histological and ultrastructural study

    Get PDF
    Background: Through scientific literature, there is evidence that light affects thyroid function in human, mice and rabbits. Constant light and sleep deprivation is also used as a form of human torture, as it has impact on cognitive performances. The present work was conducted to study the effect of constant light for short and long periods on the thyroid gland in the prepubertal male albino rats.  Materials and methods: A total of 30 prepubertal male albino rats were used. The rats separated into three groups: group I (control); group II were those rats put under steady encompassing light (24 h/day, light intensity of 600 lux) for 4 weeks; and group III were the rats maintained in constant light for 3 months. The rat thyroid gland was subjected to histological and ultrastructural examination.  Results: The rats exposed to light for long durations showed disturbed architecture; the follicles exhibited back to back arrangement (signs of hypertrophy with hyperplasia), lined by multiple layers of follicular cells or were lined by vacuolated cells. Few thyroid follicles exhibited cystic hyperplasia. Congested blood capillaries were demonstrated between the follicles.  Conclusions: It can be concluded that the short-term exposure to constant light for 1 month had no apparent effect on thyroid gland tissues while longer exposure to light for 3 months had detrimental effects on the thyroid gland structure of male albino rats.

    Performance Evaluation of Spatial Modulation and QOSTBC for MIMO Systems

    Get PDF
    YesMultiple-input multiple-output (MIMO) systems require simplified architectures that can maximize design parameters without sacrificing system performance. Such architectures may be used in a transmitter or a receiver. The most recent example with possible low cost architecture in the transmitter is spatial modulation (SM). In this study, we evaluate the SM and quasi-orthogonal space time block codes (QOSTBC) schemes for MIMO systems over a Rayleigh fading channel. QOSTBC enables STBC to be used in a four antenna design, for example. Standard QO-STBC techniques are limited in performance due to self-interference terms; here a QOSTBC scheme that eliminates these terms in its decoding matrix is explored. In addition, while most QOSTBC studies mainly explore performance improvements with different code structures, here we have implemented receiver diversity using maximal ratio combining (MRC). Results show that QOSTBC delivers better performance, at spectral efficiency comparable with SM

    Serum testosterone, sex hormone-binding globulin and sex-specific risk of incident type 2 diabetes in a retrospective primary care cohort

    Get PDF
    __Objective:__ Previous studies suggest that androgens have a sexually dimorphic impact on metabolic dysfunction. However, the sex-specific link between circulating androgens and risk of type 2 diabetes mellitus (T2DM) has not been examined in a large scale, longitudinal cohort, a task we undertook in this study. __Design:__ A retrospective cohort study in a UK primary care database. __Patients:__ We included men and women with available serum testosterone and sex hormone-binding globulin (SHBG) results. __Measurements:__ We categorized serum concentrations according to clinically relevant cut-off points and calculated crude and adjusted T2DM Incidence Rate Ratios (IRRs and aIRRs). __Results:__ Serum testosterone concentrations were available in 70 541 men and 81 889 women; serum SHBG was available in 15 907 men and 42 034 women. In comparison to a reference cohort with serum testosterone ≥20 nmol/L, men with lower serum testosterone had a significantly increased risk of T2DM, with the highest risk in those with serum testosterone <7 nmol/L (aIRR 2.71, 95% CI 2.34-3.14, P < 0.001). In women, the risk of T2DM started to increase significantly when serum testosterone concentrations exceeded 1.5 nmol/L, with the highest risk in women with serum testosterone ≥3.5 nmol/L (aIRR 1.98, 95% CI 1.55-2.52, P < 0.001). These observations were verified in a continuous rather than categorized analysis. The risk of T2DM increased in men and women with serum SHBG <40 and <50 nmol/L, respectively. __Conclusions/Interpretation:__ In this longitudinal study, we found sexually dimorphic associations between serum testosterone and risk of incident T2DM. Androgen deficiency and excess should be considered important risk factors for diabetes in men and women, respectively

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Phosphate-solubilizing fungi isolated from a semiarid area cultivated with melon (Cucumis melo L. cv. gold mine)

    No full text
    Considering that little is known about the occurrence of phosphate-solubilizing fungi from areas cultivated with melon, the phosphate solubilization ability of filamentous fungi isolated in these areas was evaluated. Three hundred and eighteen filamentous fungal isolates belonging to 23 genera were evaluated, besides Aphyllophorales and Mycelia sterilia. From those, 52 were able to solubilize P: Aphyllophorales (2), Aspergillus (34), Penicillium (10) and Rhizopus (6). These results will contribute to subsidizing further research regarding the capacity of these fungi to solubilize other sources of phosphate applied to the melon crop, as well as indicate the need for a screening program to select those with higher capacity and potential for solubilization
    corecore