8 research outputs found

    Discrete Wavelet Transform Based Cancelable Biometric System for Speaker Recognition

    Get PDF
    The biometric template characteristics and privacy conquest are challenging issues. To resolve such limitations, the cancelable biometric systems have been briefed. In this paper, the efficient cancelable biometric system based on the cryptosystem is introduced. It depends on permutation using a chaotic Baker map and substitution using masks in various transform domains. The proposed cancelable system features extraction phase is based on the Cepstral analysis from the encrypted speech signal in the time domain combined with the encrypted speech signal in the discrete wavelet transform (DWT). Then, the resultant features are applied to the artificial neural network for classification. Furthermore, wavelet denoising is used at the receiver side to enhance the proposed system. The cryptosystem provides a robust protection level of the speech template. This speech template can be replaced and recertified if it is breached. Our proposed system enables the generation of various templates from the same speech signal under the constraint of linkability between them. The simulation results confirmed that the proposed cancelable biometric system achieved higher a level of performance than traditional biometric systems, which achieved 97.5% recognition rate at low signal to noise ratio (SNR) of -25dB and 100% with -15dB and above

    A Novel Convolutional Neural Network Based on Combined Features from Different Transformations for Brain Tumor Diagnosis

    Get PDF
    Brain tumors are a leading cause of death worldwide. With the advancements in medicine and deep learning technologies, the dependency on manual classification-based diagnosis drives down owing to their inaccurate diagnosis and prognosis. Accordingly, the proposed model provides an accurate multi-class classification model for brain tumor using the convolution neural network (CNN) as a backbone. Our novel model is based on concatenating the extracted features from the proposed three branches of CNN, where each branch is fed by the output of different transform domains of the original magnetic resonance image (MRI). These transformations include Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT), and the time-domain of the original image. Then, the CNN is employed followed by a concatenation layer, flatten laver, and dense layer, before using the SoftMax layer. The proposed model was applied to the Figshare dataset of brain tumor which consists of three classes pituitary, glioma, and meningioma. The results proved the advantage of the proposed system which achieved a high mean performance over 5-fold cross-validation with 98.89% accuracy, 98.78% F1-score, 98.74% precision, 98.82% recall, and 99.44% specificity. The comparative study with well-known models, as well as the pre-trained CNN models, established the potential of the proposed model. This novel approach has the potential to significantly improve brain tumor classification accuracy. It enables a more comprehensive and objective analysis of brain tumors, leading to improved treatment decisions and better patient care

    A Novel Convolutional Neural Network Based on Combined Features from Different Transformations for Brain Tumor Diagnosis

    Get PDF
    Brain tumors are a leading cause of death worldwide. With the advancements in medicine and deep learning technologies, the dependency on manual classification-based diagnosis drives down owing to their inaccurate diagnosis and prognosis. Accordingly, the proposed model provides an accurate multi-class classification model for brain tumor using the convolution neural network (CNN) as a backbone. Our novel model is based on concatenating the extracted features from the proposed three branches of CNN, where each branch is fed by the output of different transform domains of the original magnetic resonance image (MRI). These transformations include Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT), and the time-domain of the original image. Then, the CNN is employed followed by a concatenation layer, flatten laver, and dense layer, before using the SoftMax layer. The proposed model was applied to the Figshare dataset of brain tumor which consists of three classes pituitary, glioma, and meningioma. The results proved the advantage of the proposed system which achieved a high mean performance over 5-fold cross-validation with 98.89% accuracy, 98.78% F1-score, 98.74% precision, 98.82% recall, and 99.44% specificity. The comparative study with well-known models, as well as the pre-trained CNN models, established the potential of the proposed model. This novel approach has the potential to significantly improve brain tumor classification accuracy. It enables a more comprehensive and objective analysis of brain tumors, leading to improved treatment decisions and better patient care

    Cascaded Hough Transform-Based Hair Mask Generation and Harmonic Inpainting for Automated Hair Removal from Dermoscopy Images

    No full text
    Restoring information obstructed by hair is one of the main issues for the accurate analysis and segmentation of skin images. For retrieving pixels obstructed by hair, the proposed system converts dermoscopy images into the L*a*b* color space, then principal component analysis (PCA) is applied to produce grayscale images. Afterward, the contrast-limited adaptive histogram equalization (CLAHE) and the average filter are implemented to enhance the grayscale image. Subsequently, the binary image is generated using the iterative thresholding method. After that, the Hough transform (HT) is applied to each image block to generate the hair mask. Finally, the hair pixels are removed by harmonic inpainting. The performance of the proposed automated hair removal was evaluated by applying the proposed system to the International Skin Imaging Collaboration (ISIC) dermoscopy dataset as well as to clinical images. Six performance evaluation metrics were measured, namely the mean squared error (MSE), the peak signal-to-noise ratio (PSNR), the signal-to-noise ratio (SNR), the structural similarity index (SSIM), the universal quality image index (UQI), and the correlation (C). Using the clinical dataset, the system achieved MSE, PSNR, SNR, SSIM, UQI, and C values of 34.7957, 66.98, 42.39, 0.9813, 0.9801, and 0.9985, respectively. The results demonstrated that the proposed system could satisfy the medical diagnostic requirements and achieve the best performance compared to the state-of-art

    Global economic burden of unmet surgical need for appendicitis

    No full text
    Background There is a substantial gap in provision of adequate surgical care in many low- and middle-income countries. This study aimed to identify the economic burden of unmet surgical need for the common condition of appendicitis. Methods Data on the incidence of appendicitis from 170 countries and two different approaches were used to estimate numbers of patients who do not receive surgery: as a fixed proportion of the total unmet surgical need per country (approach 1); and based on country income status (approach 2). Indirect costs with current levels of access and local quality, and those if quality were at the standards of high-income countries, were estimated. A human capital approach was applied, focusing on the economic burden resulting from premature death and absenteeism. Results Excess mortality was 4185 per 100 000 cases of appendicitis using approach 1 and 3448 per 100 000 using approach 2. The economic burden of continuing current levels of access and local quality was US 92492millionusingapproach1and92 492 million using approach 1 and 73 141 million using approach 2. The economic burden of not providing surgical care to the standards of high-income countries was 95004millionusingapproach1and95 004 million using approach 1 and 75 666 million using approach 2. The largest share of these costs resulted from premature death (97.7 per cent) and lack of access (97.0 per cent) in contrast to lack of quality. Conclusion For a comparatively non-complex emergency condition such as appendicitis, increasing access to care should be prioritized. Although improving quality of care should not be neglected, increasing provision of care at current standards could reduce societal costs substantially

    Global economic burden of unmet surgical need for appendicitis

    No full text
    Background There is a substantial gap in provision of adequate surgical care in many low- and middle-income countries. This study aimed to identify the economic burden of unmet surgical need for the common condition of appendicitis. Methods Data on the incidence of appendicitis from 170 countries and two different approaches were used to estimate numbers of patients who do not receive surgery: as a fixed proportion of the total unmet surgical need per country (approach 1); and based on country income status (approach 2). Indirect costs with current levels of access and local quality, and those if quality were at the standards of high-income countries, were estimated. A human capital approach was applied, focusing on the economic burden resulting from premature death and absenteeism. Results Excess mortality was 4185 per 100 000 cases of appendicitis using approach 1 and 3448 per 100 000 using approach 2. The economic burden of continuing current levels of access and local quality was US 92492millionusingapproach1and92 492 million using approach 1 and 73 141 million using approach 2. The economic burden of not providing surgical care to the standards of high-income countries was 95004millionusingapproach1and95 004 million using approach 1 and 75 666 million using approach 2. The largest share of these costs resulted from premature death (97.7 per cent) and lack of access (97.0 per cent) in contrast to lack of quality. Conclusion For a comparatively non-complex emergency condition such as appendicitis, increasing access to care should be prioritized. Although improving quality of care should not be neglected, increasing provision of care at current standards could reduce societal costs substantially

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    No full text
    © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide. Methods: A multimethods analysis was performed as part of the GlobalSurg 3 study—a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital. Findings: Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3·85 [95% CI 2·58–5·75]; p<0·0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63·0% vs 82·7%; OR 0·35 [0·23–0·53]; p<0·0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer. Interpretation: Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised. Funding: National Institute for Health and Care Research

    Global variation in postoperative mortality and complications after cancer surgery: a multicentre, prospective cohort study in 82 countries

    No full text
    © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 licenseBackground: 80% of individuals with cancer will require a surgical procedure, yet little comparative data exist on early outcomes in low-income and middle-income countries (LMICs). We compared postoperative outcomes in breast, colorectal, and gastric cancer surgery in hospitals worldwide, focusing on the effect of disease stage and complications on postoperative mortality. Methods: This was a multicentre, international prospective cohort study of consecutive adult patients undergoing surgery for primary breast, colorectal, or gastric cancer requiring a skin incision done under general or neuraxial anaesthesia. The primary outcome was death or major complication within 30 days of surgery. Multilevel logistic regression determined relationships within three-level nested models of patients within hospitals and countries. Hospital-level infrastructure effects were explored with three-way mediation analyses. This study was registered with ClinicalTrials.gov, NCT03471494. Findings: Between April 1, 2018, and Jan 31, 2019, we enrolled 15 958 patients from 428 hospitals in 82 countries (high income 9106 patients, 31 countries; upper-middle income 2721 patients, 23 countries; or lower-middle income 4131 patients, 28 countries). Patients in LMICs presented with more advanced disease compared with patients in high-income countries. 30-day mortality was higher for gastric cancer in low-income or lower-middle-income countries (adjusted odds ratio 3·72, 95% CI 1·70–8·16) and for colorectal cancer in low-income or lower-middle-income countries (4·59, 2·39–8·80) and upper-middle-income countries (2·06, 1·11–3·83). No difference in 30-day mortality was seen in breast cancer. The proportion of patients who died after a major complication was greatest in low-income or lower-middle-income countries (6·15, 3·26–11·59) and upper-middle-income countries (3·89, 2·08–7·29). Postoperative death after complications was partly explained by patient factors (60%) and partly by hospital or country (40%). The absence of consistently available postoperative care facilities was associated with seven to 10 more deaths per 100 major complications in LMICs. Cancer stage alone explained little of the early variation in mortality or postoperative complications. Interpretation: Higher levels of mortality after cancer surgery in LMICs was not fully explained by later presentation of disease. The capacity to rescue patients from surgical complications is a tangible opportunity for meaningful intervention. Early death after cancer surgery might be reduced by policies focusing on strengthening perioperative care systems to detect and intervene in common complications. Funding: National Institute for Health Research Global Health Research Unit
    corecore