24 research outputs found

    Small-Animal PET Imaging of Amyloid-Beta Plaques with [11C]PiB and Its Multi-Modal Validation in an APP/PS1 Mouse Model of Alzheimer's Disease

    Get PDF
    In vivo imaging and quantification of amyloid-β plaque (Aβ) burden in small-animal models of Alzheimer's disease (AD) is a valuable tool for translational research such as developing specific imaging markers and monitoring new therapy approaches. Methodological constraints such as image resolution of positron emission tomography (PET) and lack of suitable AD models have limited the feasibility of PET in mice. In this study, we evaluated a feasible protocol for PET imaging of Aβ in mouse brain with [11C]PiB and specific activities commonly used in human studies. In vivo mouse brain MRI for anatomical reference was acquired with a clinical 1.5 T system. A recently characterized APP/PS1 mouse was employed to measure Aβ at different disease stages in homozygous and hemizygous animals. We performed multi-modal cross-validations for the PET results with ex vivo and in vitro methodologies, including regional brain biodistribution, multi-label digital autoradiography, protein quantification with ELISA, fluorescence microscopy, semi-automated histological quantification and radioligand binding assays. Specific [11C]PiB uptake in individual brain regions with Aβ deposition was demonstrated and validated in all animals of the study cohort including homozygous AD animals as young as nine months. Corresponding to the extent of Aβ pathology, old homozygous AD animals (21 months) showed the highest uptake followed by old hemizygous (23 months) and young homozygous mice (9 months). In all AD age groups the cerebellum was shown to be suitable as an intracerebral reference region. PET results were cross-validated and consistent with all applied ex vivo and in vitro methodologies. The results confirm that the experimental setup for non-invasive [11C]PiB imaging of Aβ in the APP/PS1 mice provides a feasible, reproducible and robust protocol for small-animal Aβ imaging. It allows longitudinal imaging studies with follow-up periods of approximately one and a half years and provides a foundation for translational Alzheimer neuroimaging in transgenic mice

    Timing of blood sampling for butyrylcholinesterase phenotyping in patients with prolonged neuromuscular block after mivacurium or suxamethonium

    No full text
    Introduction Variants of butyrylcholinesterase are frequently associated with prolonged response to suxamethonium or mivacurium. Butyrylcholinesterase (BChE) can be characterized by phenotyping and determination of genotype. Inappropriate timing of blood sampling might interfere with phenotyping methods. However, guidelines regarding delay between exposure to anaesthesia and testing are not clearly defined. In this study, the BChE activity and phenotype in an early (T1) and late (T2) phase were compared and the phenotype/genotype correlation was assessed. Methods Patients with a prolonged paralysis after mivacurium or suxamethonium were selected after ethical committee approval and written consent. BChE activity was based on butyrylthiocholine hydrolysis rate and phenotyping on differential inhibition of BChE activity with dibucaine and fluoride. DNA sequencing allowed genotypic characterization. Results We included the results of 20 patients with prolonged neuromuscular block (NMB) induced by mivacurium or suxamethonium. In these patients, BChE activity was different at T1 and T2 (2120 [1506-2733] U L(-1)and 4055 [2810-5301] U L-1, respectively;P = 0.0014; values are mean [95% CI]). When phenotyping was possible, phenotyping at T1 and T2 yielded identical results. Phenotyping failed to identify one new variant (p.Tyr146Cys) and the K variant in 14 of 16 patients. Conclusion Anaesthesia interfered with BChE activity, but not with phenotyping. Phenotyping can be performed on blood drawn during or immediately after recovery of mivacurium or suxamethonium to screen for clinically relevant variants of BChE. However, accurate diagnosis of BChE deficiency needs further confirmation by determination of genotype
    corecore