36 research outputs found

    In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma

    Get PDF
    CXCR4 is a G-protein-coupled receptor that mediates recruitment of blood cells toward its ligand SDF-1. In cancer, high CXCR4 expression is frequently associated with tumor dissemination and poor prognosis. We evaluated the novel CXCR4 probe [(68)Ga]Pentixafor for in vivo mapping of CXCR4 expression density in mice xenografted with human CXCR4-positive MM cell lines and patients with advanced MM by means of positron emission tomography (PET). [(68)Ga]Pentixafor PET provided images with excellent specificity and contrast. In 10 of 14 patients with advanced MM [(68)Ga]Pentixafor PET/CT scans revealed MM manifestations, whereas only nine of 14 standard [(18)F]fluorodeoxyglucose PET/CT scans were rated visually positive. Assessment of blood counts and standard CD34(+) flow cytometry did not reveal significant blood count changes associated with tracer application. Based on these highly encouraging data on clinical PET imaging of CXCR4 expression in a cohort of MM patients, we conclude that [(68)Ga]Pentixafor PET opens a broad field for clinical investigations on CXCR4 expression and for CXCR4-directed therapeutic approaches in MM and other diseases

    Week one FLT-PET response predicts complete remission to R-CHOP and survival in DLBCL

    Get PDF
    Despite improved survival in the Rituximab (R) era, a considerable number of patients with diffuse large B-cell lymphoma (DLBCL) ultimately die from the disease. Functional imaging using [18F]fluorodeoxyglucose-PET is suggested for assessment of residual viable tumor very early during treatment but is compromised by non-specific tracer retention in inflammatory lesions. The PET tracer [18F]fluorodeoxythymidine (FLT) as surrogate marker of tumor proliferation may overcome this limitation. We present results of a prospective clinical study testing FLT-PET as superior and early predictor of response to chemotherapy and outcome in DLBCL. 54 patients underwent FLT-PET prior to and one week after the start of R-CHOP chemotherapy. Repetitive FLT-PET imaging was readily implemented into the diagnostic work-up. Our data demonstrate that the reduction of FLT standard uptake valuemean (SUVmean) and SUVmax one week after chemotherapy was significantly higher in patients achieving complete response (CR, n=48; non-CR, n=6; p<0.006). Martingale-residual and Cox proportional hazard analyses showed a significant monotonous decrease of mortality risk with increasing change in SUV. Consistent with these results, early FLT-PET response showed relevant discriminative ability in predicting CR. In conclusion, very early FLT-PET in the course of R-CHOP chemotherapy is feasible and enables identification of patients at risk for treatment failure

    Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging.

    No full text
    Chemokine ligand-receptor interactions play a pivotal role in cell attraction and cellular trafficking, both in normal tissue homeostasis and in disease. In cancer, chemokine receptor-4 (CXCR4) expression is an adverse prognostic factor. Early clinical studies suggest that targeting CXCR4 with suitable high-affinity antagonists might be a novel means for therapy. In addition to the preclinical evaluation of [68Ga]Pentixafor in mice bearing human lymphoma xenografts as an exemplary CXCR4-expressing tumor entity, we report on the first clinical applications of [68Ga]Pentixafor-Positron Emission Tomography as a powerful method for CXCR4 imaging in cancer patients. [68Ga]Pentixafor binds with high affinity and selectivity to human CXCR4 and exhibits a favorable dosimetry. [68Ga]Pentixafor-PET provides images with excellent specificity and contrast. This non-invasive imaging technology for quantitative assessment of CXCR4 expression allows to further elucidate the role of CXCR4/CXCL12 ligand interaction in the pathogenesis and treatment of cancer, cardiovascular diseases and autoimmune and inflammatory disorders

    Molecular imaging for early prediction of response to Sorafenib treatment in sarcoma.

    No full text
    The role of [(18)F]fluorodeoxyglucose ([(18)F]FDG) PET in staging of sarcoma is well established. The aim of this preclinical study was to compare [(18)F]fluorothymidine ([(18)F]FLT) PET to [(18)F]FDG PET regarding early metabolic changes of sarcoma in the course of targeted cancer therapy. SCID mice bearing sarcoma A673 xenotransplants were used for investigation of tumor response after treatment with the multikinase inhibitor Sorafenib. [(18)F]FLT and/or [(18)F]FDG-PET were performed prior to and early after initiation of treatment. Tumoral uptake (% Injected Dose per gram (%ID/g) of [(18)F]FLT-PET was compared to [(18)F]FDG-PET. Results were correlated with histopathology and in vitro data including cellular uptake, cell cycle-related protein expression, cell cycle distribution and apoptosis. In vitro experiments showed that A673 cells were sensitive to Sorafenib. In vivo, tumor growth was inhibited in comparison to a 4-fold increase of the tumor volume in control mice. Using [(18)F]FDG as tracer, a moderate reduction in tracer uptake (n=15, mean relative %ID/g 74%, range 35%-121%, p=0.03) was observed. The decrease in %ID/g using [(18)F]FLT-PET was significantly higher (p=0.003). The mean relative %ID/g in [(18)F]FLT uptake on day + 5 was significantly reduced to 54% compared to baseline (n=15, range 24%-125%, SD=29%). The PET analysis 24 hr after therapy showed a significant reduction of the mean [(18)F]FLT-%ID/g (p=0.04). The reduction of %ID/g on day + 1 in [(18)F]FDG-PET was not statistically significant (p=0.99). In conclusion, both [(18)F]FDG- and [(18)F]FLT-PET were able to predict response to Sorafenib treatment. In contrast to [(18)F]FDG-PET, [(18)F]FLT-PET was more predictive for very early response to treatment
    corecore