47 research outputs found

    The Extended N-Terminal Domain Confers Atypical Chemokine Receptor Properties to CXCR3-B.

    Full text link
    peer reviewedThe chemokine receptor CXCR3 plays a critical role in immune cell recruitment and activation. CXCR3 exists as two main isoforms, CXCR3-A and CXCR3-B, resulting from alternative splicing. Although the two isoforms differ only by the presence of an N-terminal extension in CXCR3-B, they have been attributed divergent functional effects on cell migration and proliferation. CXCR3-B is the more enigmatic isoform and the mechanisms underlying its function and signaling remain elusive. We therefore undertook an in-depth cellular and molecular comparative study of CXCR3-A and CXCR3-B, investigating their activation at different levels of the signaling cascades, including G protein coupling, β-arrestin recruitment and modulation of secondary messengers as well as their downstream gene response elements. We also compared the subcellular localization of the two isoforms and their trafficking under resting and stimulated conditions along with their ability to internalize CXCR3-related chemokines. Here, we show that the N-terminal extension of CXCR3-B drastically affects receptor features, modifying its cellular localization and preventing G protein coupling, while preserving β-arrestin recruitment and chemokine uptake capacities. Moreover, we demonstrate that gradual truncation of the N terminus leads to progressive recovery of surface expression and G protein coupling. Our study clarifies the molecular basis underlying the divergent effects of CXCR3 isoforms, and emphasizes the β-arrestin-bias and the atypical nature of CXCR3-B

    GPR101 drives growth hormone hypersecretion and gigantism in mice via constitutive activation of Gs and Gq/11

    Full text link
    peer reviewedGrowth hormone (GH) is a key modulator of growth and GH over-secretion can lead to gigantism. One form is X-linked acrogigantism (X-LAG), in which infants develop GH-secreting pituitary tumors over-expressing the orphan G-protein coupled receptor, GPR101. The role of GPR101 in GH secretion remains obscure. We studied GPR101 signaling pathways and their effects in HEK293 and rat pituitary GH3 cell lines, human tumors and in transgenic mice with elevated somatotrope Gpr101 expression driven by the rat Ghrhr promoter (GhrhrGpr101). Here, we report that Gpr101 causes elevated GH/prolactin secretion in transgenic GhrhrGpr101 mice but without hyperplasia/tumorigenesis. We show that GPR101 constitutively activates not only Gs, but also Gq/11 and G12/13, which leads to GH secretion but not proliferation. These signatures of GPR101 signaling, notably PKC activation, are also present in human pituitary tumors with high GPR101 expression. These results underline a role for GPR101 in the regulation of somatotrope axis function.GOLIATH

    Duplications disrupt chromatin architecture and rewire GPR101-enhancer communication in X-linked acrogigantism

    Get PDF
    X-linked acrogigantism (X-LAG) is the most severe form of pituitary gigantism and is characterized by aggressive growth hormone (GH)-secreting pituitary tumors that occur in early childhood. X-LAG is associated with chromosome Xq26.3 duplications (the X-LAG locus typically includes VGLL1, CD40LG, ARHGEF6, RBMX, and GPR101) that lead to massive pituitary tumoral expression of GPR101, a novel regulator of GH secretion. The mechanism by which the duplications lead to marked pituitary misexpression of GPR101 alone was previously unclear. Using Hi-C and 4C-seq, we characterized the normal chromatin structure at the X-LAG locus. We showed that GPR101 is located within a topologically associating domain (TAD) delineated by a tissue-invariant border that separates it from centromeric genes and regulatory sequences. Next, using 4C-seq with GPR101, RBMX, and VGLL1 viewpoints, we showed that the duplications in multiple X-LAG-affected individuals led to ectopic interactions that crossed the invariant TAD border, indicating the existence of a similar and consistent mechanism of neo-TAD formation in X-LAG. We then identified several pituitary active cis-regulatory elements (CREs) within the neo-TAD and demonstrated in vitro that one of them significantly enhanced reporter gene expression. At the same time, we showed that the GPR101 promoter permits the incorporation of new regulatory information. Our results indicate that X-LAG is a TADopathy of the endocrine system in which Xq26.3 duplications disrupt the local chromatin architecture forming a neo-TAD. Rewiring GPR101-enhancer interaction within the new regulatory unit is likely to cause the high levels of aberrant expression of GPR101 in pituitary tumors caused by X-LAG.The work was supported by the following funding sources: Fondazione Telethon, Italy grant no. GGP20130 (to G.T.); Society for Endocrinology equipment grant (to G.T.); Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH) Research project Z01-HD008920 (to C.A.S., supporting G.T., F.R.F.); Fonds d’Investissement pour la Recherche Scientifique (FIRS) of the Centre Hospitalier Universitaire de Liège (to A.F.D. and A.B.); the JABBS Foundation, UK (to A.B.); and Novo Nordisk Belgium Educational Grant, Belgium (to A.F.D. and A.B.). M.F. was funded by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement (#800396) and a Juan de la Cierva-Formación fellowship from the Spanish Ministry of Science and Innovation (FJC2018-038233-I). G.T. was funded by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement (#843843). A.F.D. and D.A. were supported by Action de Recherche Concertée (ARC) Grant 17/21-01 from Liège University. D.A. was supported by grants from Télévie (7461117 F, 7454719 F) and the Léon Fredericq Foundation, Belgium

    Role of chemokines in atopic diseases : pharmacological study using the neutraligands

    No full text
    La dermatite atopique est une maladie inflammatoire cutanée caractérisée par le recrutement de nombreuses cellules inflammatoires, y compris les cellules T CD4+ detype 2, les éosinophiles et les cellules dendritiques. Les chimiokines et leurs récepteurs jouent un rôle central dans le trafic des globules blancs de la circulation sanguine vers la peau enflammée. Deux chimiokines, CCL17/TARC (thymus and activation-regulated chemokine) et CCL22/MDC (macrophage-derived chemokine) présentent un intérêt dans l'inflammation cutanée, puisqu’elles attirent principalement les lymphocytes T de type 2 exprimant le récepteur CCR4. Compte tenu du rôle de l'axe CCL17/CCL22/CCR4 dans le développement de la dermatite atopique, nous cherchons à identifier des petites molécules chimiques, appelées aussi "neutraligands", ciblant CCL17 ou CCL22. Par analogie aux anticorps neutralisants,ces molécules se fixent aux chimiokines et neutralisent leurs fonctions biologiques.Nous avons mis en place un essai de criblage à haut débit basé sur la détection de la mobilisation du calcium intracellulaire induite par CCL17 ou CCL22, et nous avons testé une collection de substances naturelles. Deux “touches”, GPN279 et GPN136,bloquent respectivement les réponses calciques induites par CCL17 et CCL22. Ces deux composés ne sont pas des antagonistes du récepteur CCR4 puisque leur préincubation avec le récepteur n'a pas inhibé les réponses calciques par CCL17 ouCCL22. Nous avons également évalué l'activité in vivo de GPN279 et GPN136 dans un modèle murin de dermatite atopique. Ces deux composés diminuent la rougeur,l'épaisseur des oreilles, l’expression des cytokines Th2 et le taux des IgE plasmatiques. En conclusion, nos résultats montrent que les neutraligands présentent un potentiel pour contrôler l’inflammation de type Th2. Ils nous aideront à mieux comprendre le rôle des chimiokines dans la dermatite atopique.Atopic dermatitis is an inflammatory skin disease characterized by the recruitment of many inflammatory cells, including CD4+T helper 2 cells, eosinophils et dendritic cells.Chemokines and their receptors are believed to be essential for leukocyte traffickingfrom the circulation into the enflamed skin. Two chemokines, thymus and activation regulated chemokine (TARC/CCL17) and macrophage-derived chemokine(MDC/CCL22) may be of interest in skin inflammation, because they mainly attract Tcells expressing the chemokines receptor CCR4 preferentially expressed on T helper2 cells. Considering the role of CCL17/CCL22/CCR4 axis in the development of atopic dermatitis, we aim at the identification of small compounds called “neutraligands”targeting CCL17 or CCL22. By analogy to neutralizing antibodies, these molecules bind to chemokines (and not to the receptors) and neutralize their biological functions.So, we have set up a high-through put assay based on the intracellular Ca2+ increase upon activation with CCL17 or CCL22, and we screened the natural substance library. Two hit compounds, GPN279 and GPN136, blocked CCL17 and CCL22-induced Ca2+responses, respectively. The compounds did not block the CCR4 receptor since their preincubation with the receptor did not affect the Ca2+ response. Then, we evaluated the in vivo activity of GPN279 and GPN136 in a mouse model of atopic dermatitis. We show that both compounds prevented ear redness and thickness and decreased Th2-related cytokines as well as plasma IgE in a MC903-induced atopic dermatitis model. Altogether, our results show successful control of Th2 inflammation with the CCL17and CCL22 neutraligands. These new pharmacological tools will help us to better understand the role of chemokines in the pathogenesis of atopic dermatitis

    Basal interaction of the orphan receptor GPR101 with arrestins leads to constitutive internalization.

    Full text link
    peer reviewedGPR101 is an orphan G protein-coupled receptor that promotes growth hormone secretion in the pituitary. The microduplication of the GPR101 gene has been linked with the X-linked acrogigantism, or X-LAG, syndrome. This disease is characterized by excessive growth hormone secretion and abnormal rapid growth beginning early in life. Mechanistically, GPR101 induces growth hormone secretion through constitutive activation of multiple heterotrimeric G proteins. However, the full scope of GPR101 signaling remains largely elusive. Herein, we investigated the association of GPR101 to multiple transducers and uncovered an important basal interaction with Arrestin 2 (β-arrestin 1) and Arrestin 3 (β-arrestin 2). By using a GPR101 mutant lacking the C-terminus and cell lines with an Arrestin 2/3 null background, we show that the arrestin association leads to constitutive clathrin- and dynamin-mediated GPR101 internalization. To further highlight GPR101 intracellular fate, we assessed the colocalization of GPR101 with Rab protein markers. Internalized GPR101 was mainly colocalized with the early endosome markers, Rab5 and EEA-1, and to a lesser degree with the late endosome marker Rab7. However, GPR101 was not colocalized with the recycling endosome marker Rab11. These findings show that the basal arrestin recruitment by GPR101 C-terminal tail drives the receptor constitutive clathrin-mediated internalization. Intracellularly, GPR101 concentrates in the endosomal compartment and is degraded through the lysosomal pathway. In conclusion, we uncovered a constitutive intracellular trafficking of GPR101 that potentially represents an important layer of regulation of its signaling and function
    corecore