683 research outputs found

    Duality Invariance of Cosmological Perturbation Spectra

    Get PDF
    I show that cosmological perturbation spectra produced from quantum fluctuations in massless or self-interacting scalar fields during an inflationary era remain invariant under a two parameter family of transformations of the homogeneous background fields. This relates slow-roll inflation models to solutions which may be far from the usual slow-roll limit. For example, a scale-invariant spectrum of perturbations in a minimally coupled, massless field can be produced by an exponential expansion with a∝eHta\propto e^{Ht}, or by a collapsing universe with a∝(−t)2/3a\propto (-t)^{2/3}.Comment: 5 pages, Latex with Revtex. Hamiltonian formulation added and discussion expanded. Version to appear in Phys Rev

    Profile Characteristics of Cut Tooth Surfaces Developed by Rotating Instruments

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68018/2/10.1177_00220345570360062301.pd

    CBR Anisotropy and the Running of the Scalar Spectral Index

    Full text link
    Accurate (â‰Č1%\lesssim 1\% ) predictions for the anisotropy of the Cosmic Background Radiation (CBR) are essential for using future high-resolution (â‰Č1∘\lesssim 1^\circ) CBR maps to test cosmological models. In many inflationary models the variation (``running'') of the spectral index of the spectrum of density perturbations is a significant effect and leads to changes of around 1\% to 10\% in the CBR power spectrum. We propose a general method for taking running into account which uses the derivative of the spectral index (dn/dln⁥kdn/d\ln k). Conversely, high-resolution CBR maps may be able to determine dn/dln⁥kdn/d\ln k, giving important information about the inflationary potential.Comment: Discussion of calculation clarified; error corrected which reduces estimated effect for chaotic inflatio

    Tunneling and propagation of vacuum bubbles on dynamical backgrounds

    Full text link
    In the context of bubble universes produced by a first-order phase transition with large nucleation rates compared to the inverse dynamical time scale of the parent bubble, we extend the usual analysis to non-vacuum backgrounds. In particular, we provide semi-analytic and numerical results for the modified nucleation rate in FLRW backgrounds, as well as a parameter study of bubble walls propagating into inhomogeneous (LTB) or FLRW spacetimes, both in the thin-wall approximation. We show that in our model, matter in the background often prevents bubbles from successful expansion and forces them to collapse. For cases where they do expand, we give arguments why the effects on the interior spacetime are small for a wide range of reasonable parameters and discuss the limitations of the employed approximations.Comment: 29 pages, 8 figures, typos corrected, matches published versio

    Localisation of Fermions to brane: Codimension d≄2d \geq 2

    Full text link
    We investigate 4+d4+d dimensional fermionic models in which the system in codimension-dd supports a topologically stable solution, and in which the fermion may be localised to the brane, with power law in 'instanton' backgrounds and exponentially in 'soliton' backgrounds. When the fermions are isoscalars, the mechanism fails, while for isospinor fermions it is successful. As backgrounds we consider instantons of Yang--Mills and sigma models in even codimensions, solitons of sigma models in odd codimensions, as well as solitons of Higgs and Goldstone models in all codimensions.Comment: 20 pages latex; expande

    Developmental contexts and features of elite academy football players: Coach and player perspectives

    Get PDF
    Player profiling can reap many benefits; through reflective coach-athlete dialogue that produces a profile the athlete has a raised awareness of their own development, while the coach has an opportunity to understand the athlete's viewpoint. In this study, we explored how coaches and players perceived the development features of an elite academy footballer and the contexts in which these features are revealed, in order to develop a player profile to be used for mentoring players. Using a Delphi polling technique, coaches and players experienced a number of 'rounds' of expressing their opinions regarding player development contexts and features, ultimately reduced into a consensus. Players and coaches had differing priorities on the key contexts of player development. These contexts, when they reflect the consensus between players and coaches were heavily dominated by ability within the game and training. Personal, social, school, and lifestyle contexts featured less prominently. Although 'discipline' was frequently mentioned as an important player development feature, coaches and players disagreed on the importance of 'training'

    The Detectability of Departures from the Inflationary Consistency Equation

    Full text link
    We study the detectability, given CMB polarization maps, of departures from the inflationary consistency equation, r \equiv T/S \simeq -5 n_T, where T and S are the tensor and scalar contributions to the quadrupole variance, respectively. The consistency equation holds if inflation is driven by a slowly-rolling scalar field. Departures can be caused by: 1) higher-order terms in the expansion in slow-roll parameters, 2) quantum loop corrections or 3) multiple fields. Higher-order corrections in the first two slow-roll parameters are undetectably small. Loop corrections are detectable if they are nearly maximal and r \ga 0.1. Large departures (|\Delta n_T| \ga 0.1) can be seen if r \ga 0.001. High angular resolution can be important for detecting non-zero r+5n_T, even when not important for detecting non-zero r.Comment: 7 pages, 4 figures, submitted to PR

    Gravitational waves in non-singular string cosmologies

    Get PDF
    We study the evolution of tensor metric fluctuations in a class of non-singular models based on the string effective action, by including in the perturbation equation the higher-derivative and loop corrections needed to regularise the background solutions. We discuss the effects of such higher-order corrections on the final graviton spectrum, and we compare the results of analytical and numerical computations.Comment: 24 pages, 7 figure

    Collider signals from slow decays in supersymmetric models with an intermediate-scale solution to the mu problem

    Get PDF
    The problem of the origin of the mu parameter in the Minimal Supersymmetric Standard Model can be solved by introducing singlet supermultiplets with non-renormalizable couplings to the ordinary Higgs supermultiplets. The Peccei-Quinn symmetry is broken at a scale which is the geometric mean between the weak scale and the Planck scale, yielding a mu term of the right order of magnitude and an invisible axion. These models also predict one or more singlet fermions which have electroweak-scale masses and suppressed couplings to MSSM states. I consider the case that such a singlet fermion, containing the axino as an admixture, is the lightest supersymmetric particle. I work out the relevant couplings in several of the simplest models of this type, and compute the partial decay widths of the next-to-lightest supersymmetric particle involving leptons or jets. Although these decays will have an average proper decay length which is most likely much larger than a typical collider detector, they can occasionally occur within the detector, providing a striking signal. With a large sample of supersymmetric events, there will be an opportunity to observe these decays, and so gain direct information about physics at very high energy scales.Comment: 24 pages, LaTeX, 4 figure

    Dynamics of tachyonic preheating after hybrid inflation

    Full text link
    We study the instability of a scalar field at the end of hybrid inflation, using both analytical techniques and numerical simulations. We improve previous studies by taking the inflaton field fully into account, and show that the range of unstable modes depends sensitively on the velocity of the inflaton field, and thereby on the Hubble rate, at the end of inflation. If topological defects are formed, their number density is determined by the shortest unstable wavelength. Finally, we show that the oscillations of the inflaton field amplify the inhomogeneities in the energy density, leading to local symmetry restoration and faster thermalization. We believe this explains why tachyonic preheating is so effective in transferring energy away from the inflaton zero mode.Comment: 12 pages, 10 figures, REVTeX. Minor changes, some references added. To appear in PR
    • 

    corecore