23,881 research outputs found
Thermodynamic energy exchange in a moving plate capacitor
In this paper we describe an apparent paradox concerning a moving plate capacitor driven by thermal noise from a resistor. The plates are attracted together, but a demon restores the plates of the capacitor to their original position when the voltage across the capacitor is small-hence only small forces are present for the demon to work against. The demon has to work harder than this to avoid the situation of perpetual motion, but the open question is how? This is unsolved, however we explore the concept of a moving plate capacitor by examining the case where it is still excited by thermal noise, but where the restoring force on the capacitor plates is provided by a simple spring rather than some unknown demon. We display simulation results with interesting behavior, particularly where the capacitor plates collide with each other. (c) 2001 American Institute of Physics.B. R. Davis, D. Abbott, and J. M. R. Parrond
Aerodynamic and directional acoustic performance of a scoop inlet
Aerodynamic and directional acoustic performances of a scoop inlet were studied. The scoop inlet is designed with a portion of the lower cowling extended forward to direct upward any noise that is propagating out the front of the engine toward the ground. The tests were conducted in an anechoic wind tunnel facility at free stream velocities of 0, 18, 41, and 61 m/sec and angles of attack from -10 deg to 120 deg. Inlet throat Mach number was varied from 0.30 to 0.75. Aerodynamically, at a free stream velocity of 41 m/sec, the design throat Mach number (0.63), and an angle of attack of 50 deg, the scoop inlet total pressure recovery was 0.989 and the total pressure distortion was 0.15. The angles of attack where flow separation occurred with the scoop inlet were higher than those for a conventional symmetric inlet. Acoustically, the scoop inlet provided a maximum noise reduction of 12 to 15 db below the inlet over the entire range of throat Mach number and angle of attack at a free-stream velocity of 41 m/sec
Anomalous ionization seen in the spectra of B supergiants
An IUE survey of B supergiants has been conducted to study the persistence with spectral type of the ultraviolet resonance lines of N V, C IV and Si IV. N V is seen as late as B2.5Ia, C IV until B6Ia and Si IV throughout the range from B1.5 to B9. This is in fairly good agreement with the Auger ionization model of Cassinelli and Olson (1979). The terminal velocities are derived for the 20 stars in the sample and it is found that the ratio v(T)/v(esc) decreases monotonically with spectral type from the value of 3.0 that it has in the O spectral range to the value 1.0 at B9Ia
Comparison of the noise characteristics of two low pressure ratio fans with a high throat Mach number inlet
Acoustics data obtained in experiments with two low pressure ratio 50.8 cm (20 in.) diameter model fans differing in design tip speed were compared. Determination of the average throat Mach number used to compare high Mach inlet noise reduction characteristics was based on a correlation of inlet wall static pressure measurements with a flow field calculation. The largest noise reductions were generally obtained with the higher tip speed fan. At a throat Mach number of 0.79, the difference in noise reduction was about 3.5 db with static test conditions. Although the noise reduction increased for the lower tip speed fan with a simulated flight velocity of 41 m/sec (80 knots), it was still about 2 db less than that of the high tip speed fan which was only tested at the static condition. However, variations in acoustic performance could not be absolutely attributed to the different fan designs because of differences in inlet lip contours which resulted in small variations of peak wall Mach number and axial extend of supersonic and near-sonic flow
Simulated flight effects on noise characteristics of a fan inlet with high throat Mach number
An anechoic wind tunnel experiment was conducted to determine the effects of simulated flight on the noise characteristics of a high throat Mach number fan inlet. Comparisons were made with the performance of a conventional low throat Mach number inlet with the same 50.8 cm fan noise source. Simulated forward velocity of 41 m/sec reduced perceived noise levels for both inlets, the largest effect being more than 3 db for the high throat Mach number inlet. The high throat Mach number inlet was as much as 7.5 db quieter than the low throat Mach number inlet with tunnel airflow and about 6 db quieter without tunnel airflow. Effects of inlet flow angles up to 30 deg were seemingly irregular and difficult to characterize because of the complex flow fields and generally small noise variations. Some modifications of tones and directivity at blade passage harmonics resulting from inlet flow angle variation were noted
Acoustic Signatures of a Model Fan in the NASA-Lewis Anechoic Wind Tunnel
One-third octave band and narrowband spectra and continuous directivity patterns radiated from an inlet are presented over ranges of fan operating conditions, tunnel velocity, and angle of attack. Tunnel flow markedly reduced the unsteadiness and level of the blade passage tone, revealed the cutoff design feature of the blade passage tone, and exposed a lobular directivity pattern for the second harmonic tone. The full effects of tunnel flow are shown to be complete above a tunnel velocity of 20 meters/second. The acoustic signatures are also shown to be strongly affected by fan rotational speed, fan blade loading, and inlet angle of attack
Mutual information for examining correlations in DNA
This paper examines two methods for finding whether long-range correlations
exist in DNA: a fractal measure and a mutual information technique. We evaluate
the performance and implications of these methods in detail. In particular we
explore their use comparing DNA sequences from a variety of sources. Using
software for performing in silico mutations, we also consider evolutionary
events leading to long range correlations and analyse these correlations using
the techniques presented. Comparisons are made between these virtual sequences,
randomly generated sequences, and real sequences. We also explore correlations
in chromosomes from different species.Comment: 8 pages, 3 figure
QED in external fields, a functional point of view
A functional partial differential equation is set for the proper graphs
generating functional of QED in external electromagnetic fields. This equation
leads to the evolution of the proper graphs with the external field amplitude
and the external field gauge dependence of the complete fermion propagator and
vertex is derived non-perturbativally.Comment: 8 pages, published versio
- …