933 research outputs found
Is nonperturbative inflatino production during preheating a real threat to cosmology?
We discuss toy models where supersymmetry is broken due to non-vanishing
time-varying vacuum expectation value of the inflaton field during preheating.
We discuss the production of inflatino the superpartner of inflaton due to
vacuum fluctuations and then we argue that they do not survive until
nucleosynthesis and decay along with the inflaton to produce a thermal bath
after preheating. Thus the only relevant remnant is the helicity \pm 3/2
gravitinos which can genuinely cause problem to nucleosynthesis.Comment: 10 pages, Updates to match the accepted version in Phys. Rev.
Electroweak Radiative Corrections to Neutral-Current Drell-Yan Processes at Hadron Colliders
We calculate the complete electroweak O(alpha) corrections to pp, pbar p ->
l+l- X (l=e, mu) in the Standard Model of electroweak interactions. They
comprise weak and photonic virtual one-loop corrections as well as real photon
radiation to the parton-level processes q bar q -> gamma,Z -> l+l-. We study in
detail the effect of the radiative corrections on the l+l- invariant mass
distribution, the cross section in the Z boson resonance region, and on the
forward-backward asymmetry, A_FB, at the Fermilab Tevatron and the CERN Large
Hadron Collider. The weak corrections are found to increase the Z boson cross
section by about 1%, but have little effect on the forward-backward asymmetry
in the Z peak region. Threshold effects of the W box diagrams lead to
pronounced effects in A_FB at m(l+l-) approx 160 GeV which, however, will be
difficult to observe experimentally. At high di-lepton invariant masses, the
non-factorizable weak corrections are found to become large.Comment: Revtex3 file, 39 pages, 2 tables, 12 figure
Cystic Fibrosis Foundation and European Cystic Fibrosis Society Survey of cystic fibrosis mental health care delivery
Background: Psychological morbidity in individuals with cystic fibrosis (CF) and their caregivers is common. The Cystic Fibrosis Foundation (CFF) and European Cystic Fibrosis Society (ECFS) Guidelines Committee on Mental Health sought the views of CF health care professionals concerning mental health care delivery.
Methods: An online survey which focused on the current provision and barriers to mental health care was distributed to CF health care professionals.
Results: Of the 1454 respondents, many did not have a colleague trained in mental health issues and 20% had no one on their team whose primary role was focused on assessing or treating these issues. Insufficient resources and a lack of competency were reported in relation to mental health referrals. Seventy-three percent of respondents had no experience with mental health screening. Of those who did, they utilized 48 different, validated scales.
Conclusions: These data have informed the decision-making, dissemination and implementation strategies of the Mental Health Guidelines Committee sponsored by the CFF and ECFS
N^3LO fits to xF_3 data : vs 1/Q^2 contributions
The results of approximate N^3LO and detailed NNLO fits to data of
the CCFR'97 collaboration are presented. We demonstrate that
non-perturbative corrections to modeled by three independent procedures
are shadowed by perturbative QCD effects, starting at the NNLO. Special
attention is paid to revealing the role of the recently calculated NNLO
corrections to the anomalous dimensions and LO corrections to the
coefficient functions of odd moments of with . The related
values of are extracted.Comment: 5 pages, 1 figure, LaTeX; Contributed to the Proceedings of joint 6th
Symposium RADCOR 2002 and 6th Zeuthen Workshop Loops and Legs in Quantum
Field Theory, September 8-13, Kloster Banz, Germany; size of postscript
figure fixe
Dynamics of coupled bosonic systems with applications to preheating
Coupled, multi-field models of inflation can provide several attractive
features unavailable in the case of a single inflaton field. These models have
a rich dynamical structure resulting from the interaction of the fields and
their associated fluctuations. We present a formalism to study the
nonequilibrium dynamics of coupled scalar fields. This formalism solves the
problem of renormalizing interacting models in a transparent way using
dimensional regularization. The evolution is generated by a renormalized
effective Lagrangian which incorporates the dynamics of the mean fields and
their associated fluctuations at one-loop order. We apply our method to two
problems of physical interest: (i) a simple two-field model which exemplifies
applications to reheating in inflation, and (ii) a supersymmetric hybrid
inflation model. This second case is interesting because inflation terminates
via a smooth phase transition which gives rise to a spinodal instability in one
of the fields. We study the evolution of the zero mode of the fields and the
energy density transfer to the fluctuations from the mean fields. We conclude
that back reaction effects can be significant over a wide parameter range. In
particular for the supersymmetric hybrid model we find that particle production
can be suppressed due to these effects.Comment: 23 pages, 16 eps-figures, minor changes in the text, references
added, accepted for publication in PR
The concentration-discharge slope as a tool for water quality management
Recent technological breakthroughs of optical sensors and analysers have enabled matching the water quality measurement interval to the time scales of stream flow changes and led to an improved understanding of spatially and temporally heterogeneous sources and delivery pathways for many solutes and particulates. This new ability to match the chemograph with the hydrograph has promoted renewed interest in the concentration-discharge (c-q) relationship and its value in characterizing catchment storage, time lags and legacy effects for both weathering products and anthropogenic pollutants. In this paper we evaluated the stream c-q relationships for a number of water quality determinands (phosphorus, suspended sediments, nitrogen) in intensively managed agricultural catchments based on both high-frequency (sub-hourly) and long-term low-frequency (fortnightly-monthly) routine monitoring data. We used resampled high-frequency data to test the uncertainty in water quality parameters (e.g. mean, 95th percentile and load) derived from low-frequency sub-datasets. We showed that the uncertainty in water quality parameters increases with reduced sampling frequency as a function of the c-q slope. We also showed that different sources and delivery pathways control c-q relationship for different solutes and particulates. Secondly, we evaluated the variation in c-q slopes derived from the long-term low-frequency data for different determinands and catchments and showed strong chemostatic behaviour for phosphorus and nitrogen due to saturation and agricultural legacy effects. The c-q slope analysis can provide an effective tool to evaluate the current monitoring networks and the effectiveness of water management interventions. This research highlights how improved understanding of solute and particulate dynamics obtained with optical sensors and analysers can be used to understand patterns in long-term water quality time series, reduce the uncertainty in the monitoring data and to manage eutrophication in agricultural catchments
Linear stability analysis of retrieval state in associative memory neural networks of spiking neurons
We study associative memory neural networks of the Hodgkin-Huxley type of
spiking neurons in which multiple periodic spatio-temporal patterns of spike
timing are memorized as limit-cycle-type attractors. In encoding the
spatio-temporal patterns, we assume the spike-timing-dependent synaptic
plasticity with the asymmetric time window. Analysis for periodic solution of
retrieval state reveals that if the area of the negative part of the time
window is equivalent to the positive part, then crosstalk among encoded
patterns vanishes. Phase transition due to the loss of the stability of
periodic solution is observed when we assume fast alpha-function for direct
interaction among neurons. In order to evaluate the critical point of this
phase transition, we employ Floquet theory in which the stability problem of
the infinite number of spiking neurons interacting with alpha-function is
reduced into the eigenvalue problem with the finite size of matrix. Numerical
integration of the single-body dynamics yields the explicit value of the
matrix, which enables us to determine the critical point of the phase
transition with a high degree of precision.Comment: Accepted for publication in Phys. Rev.
Particle creation, classicality and related issues in quantum field theory: II. Examples from field theory
We adopt the general formalism, which was developed in Paper I
(arXiv:0708.1233) to analyze the evolution of a quantized time-dependent
oscillator, to address several questions in the context of quantum field theory
in time dependent external backgrounds. In particular, we study the question of
emergence of classicality in terms of the phase space evolution and its
relation to particle production, and clarify some conceptual issues. We
consider a quantized scalar field evolving in a constant electric field and in
FRW spacetimes which illustrate the two extreme cases of late time adiabatic
and highly non-adiabatic evolution. Using the time-dependent generalizations of
various quantities like particle number density, effective Lagrangian etc.
introduced in Paper I, we contrast the evolution in these two limits bringing
out key differences between the Schwinger effect and evolution in the de Sitter
background. Further, our examples suggest that the notion of classicality is
multifaceted and any one single criterion may not have universal applicability.
For example, the peaking of the phase space Wigner distribution on the
classical trajectory \emph{alone} does not imply transition to classical
behavior. An analysis of the behavior of the \emph{classicality parameter},
which was introduced in Paper I, leads to the conclusion that strong particle
production is necessary for the quantum state to become highly correlated in
phase space at late times.Comment: RevTeX 4; 27 pages; 18 figures; second of a series of two papers, the
first being arXiv:0708.1233 [gr-qc]; high resolution figures available from
the authors on reques
Particle creation, classicality and related issues in quantum field theory: I. Formalism and toy models
The quantum theory of a harmonic oscillator with a time dependent frequency
arises in several important physical problems, especially in the study of
quantum field theory in an external background. While the mathematics of this
system is straightforward, several conceptual issues arise in such a study. We
present a general formalism to address some of the conceptual issues like the
emergence of classicality, definition of particle content, back reaction etc.
In particular, we parametrize the wave function in terms of a complex number
(which we call excitation parameter) and express all physically relevant
quantities in terms it. Many of the notions -- like those of particle number
density, effective Lagrangian etc., which are usually defined using asymptotic
in-out states -- are generalized as time-dependent concepts and we show that
these generalized definitions lead to useful and reasonable results. Having
developed the general formalism we apply it to several examples. Exact analytic
expressions are found for a particular toy model and approximate analytic
solutions are obtained in the extreme cases of adiabatic and highly
non-adiabatic evolution. We then work out the exact results numerically for a
variety of models and compare them with the analytic results and
approximations. The formalism is useful in addressing the question of emergence
of classicality of the quantum state, its relation to particle production and
to clarify several conceptual issues related to this. In Paper II
(arXiv:0708.1237), which is a sequel to this, the formalism will be applied to
analyze the corresponding issues in the context of quantum field theory in
background cosmological models and electric fields.Comment: RevTeX 4; 32 pages; 28 figures; first of a series of two papers, the
second being arXiv:0708.1237 [gr-qc]; high resolution figures available from
the authors on reques
Nucleon Charge and Magnetization Densities from Sachs Form Factors
Relativistic prescriptions relating Sachs form factors to nucleon charge and
magnetization densities are used to fit recent data for both the proton and the
neutron. The analysis uses expansions in complete radial bases to minimize
model dependence and to estimate the uncertainties in radial densities due to
limitation of the range of momentum transfer. We find that the charge
distribution for the proton is significantly broad than its magnetization
density and that the magnetization density is slightly broader for the neutron
than the proton. The neutron charge form factor is consistent with the Galster
parametrization over the available range of Q^2, but relativistic inversion
produces a softer radial density. Discrete ambiguities in the inversion method
are analyzed in detail. The method of Mitra and Kumari ensures compatibility
with pQCD and is most useful for extrapolating form factors to large Q^2.Comment: To appear in Phys. Rev. C. Two new figures and accompanying text have
been added and several discussions have been clarified with no significant
changes to the conclusions. Now contains 47 pages including 21 figures and 2
table
- …