118 research outputs found

    Estimation of LH, FSH, Prolactin, Ferritin and Vitamin B12 of Hypothyroid Women in Kirkuk City/Iraq

    Get PDF
    Thyroid diseases are among the commonest endocrine disorders. It effects growth, embryonic development, reproduction, tissue differentiation, maturation and  metabolism, this research aimed  to study gonadal dysfunction in hypothyroid womens, included serum levels of  FSH, LH, prolactin, Ferritin and Vitamin B12 with thyroid hormones,   blood sample was collected from women age ranged between (15-49) years 65 of them had hypothyroidisim and they were under hormonal treatment, while 10 of the samples were healthy control, The results Showed a significant difference in Serum levels of T3, T4, TSH, LH, FSH and Prolactin, while there was a significant decrease in Vitamin B12 Levels (P ≤ 0.027) in hypothyroid patients under hormonal treatment compared to control group, we concluded that  circulation thyroid hormone showed a significant effect of serum levels of LH, FSH, Prolactin and Vitamin B12,While no effects shows on serum ferritin

    Acinetobacter baumannii extracted silver nanoparticles: A study on the characterization and antibacterial activity

    Get PDF
    Background: Antibiotic resistance is a worldwide problem, associated with increased mortality. Biosynthesized silver nanoparticles are promising solution. Aim: To improve the anti-microbial resistance using Acinetobacter baumannii  (A. baumannii) biosynthesized silver nitrate.Methods: Optimization of biosynthesis condition and characterization by Ultraviolet-Visible spectroscopy (U-V-Vis) at a wavelength from 300 to 400 nm, ±1.67 nm. The Acinetobacter baumannii biosynthesized silver nitrate was examined using transmission electron microscope (TEM).  Fourier transformed infrared spectroscopy was done to study the capping material, X-ray spectroscopy confirm silver nanoparticles synthesis with particle size match TEM measuring and testing its antibacterial effect was done. Results: The obtained U.V Spectroscopy and TEM characters of silver nitrate biosynthesized A.baumannii. Acinetobacter baumannii biosynthesized silver nitrate was obtained indicated. Minimum inhibitory concentration (MIC) was from 1-3 mg/ml against extreme drug resistance bacteria. the size of silver nanoparticles was found to be between 18 nm and 50 nm. The AgNPs were found to be stable for over 6 months at 37°C.The MIC for AgNPs formed from A. baumannii CFF was detected as 2.85 mg/ml, MBC (minimal bactericidal concentration) was 3 mg/ml for K. pneumonia, MIC was 1 mg/ml, MBC was 0.5 mg/ml for P. aeruginosa and MIC was 1.5 mg/ml and MBC was 1 mg/ml for A. baumannii isolates. Lethal concentration (LC) 50% was 60.584 ug/ml) assessed by Sulforhodamine-B assay on hepatocellular carcinoma cell line. Conclusion: Acinetobacter baumannii extracted silver nitrate has A promising antibacterial action that may help in solving the multidrug resistance bacteria

    Future and potential spending on health 2015-40: Development assistance for health, and government, prepaid private, and out-of-pocket health spending in 184 countries

    Get PDF
    Background: The amount of resources, particularly prepaid resources, available for health can affect access to health care and health outcomes. Although health spending tends to increase with economic development, tremendous variation exists among health financing systems. Estimates of future spending can be beneficial for policy makers and planners, and can identify financing gaps. In this study, we estimate future gross domestic product (GDP), all-sector government spending, and health spending disaggregated by source, and we compare expected future spending to potential future spending. Methods: We extracted GDP, government spending in 184 countries from 1980-2015, and health spend data from 1995-2014. We used a series of ensemble models to estimate future GDP, all-sector government spending, development assistance for health, and government, out-of-pocket, and prepaid private health spending through 2040. We used frontier analyses to identify patterns exhibited by the countries that dedicate the most funding to health, and used these frontiers to estimate potential health spending for each low-income or middle-income country. All estimates are inflation and purchasing power adjusted. Findings: We estimated that global spending on health will increase from US9.21trillionin2014to9.21 trillion in 2014 to 24.24 trillion (uncertainty interval [UI] 20.47-29.72) in 2040. We expect per capita health spending to increase fastest in upper-middle-income countries, at 5.3% (UI 4.1-6.8) per year. This growth is driven by continued growth in GDP, government spending, and government health spending. Lower-middle income countries are expected to grow at 4.2% (3.8-4.9). High-income countries are expected to grow at 2.1% (UI 1.8-2.4) and low-income countries are expected to grow at 1.8% (1.0-2.8). Despite this growth, health spending per capita in low-income countries is expected to remain low, at 154(UI133−181)percapitain2030and154 (UI 133-181) per capita in 2030 and 195 (157-258) per capita in 2040. Increases in national health spending to reach the level of the countries who spend the most on health, relative to their level of economic development, would mean $321 (157-258) per capita was available for health in 2040 in low-income countries. Interpretation: Health spending is associated with economic development but past trends and relationships suggest that spending will remain variable, and low in some low-resource settings. Policy change could lead to increased health spending, although for the poorest countries external support might remain essential

    Centrality Dependence Of The Pseudorapidity Density Distribution For Charged Particles In Pb-pb Collisions At √snn=2.76tev

    Get PDF
    7264/Mai61062

    Comparative assessment of methods for short-term forecasts of COVID-19 hospital admissions in England at the local level

    Get PDF
    Background: Forecasting healthcare demand is essential in epidemic settings, both to inform situational awareness and facilitate resource planning. Ideally, forecasts should be robust across time and locations. During the COVID-19 pandemic in England, it is an ongoing concern that demand for hospital care for COVID-19 patients in England will exceed available resources. Methods: We made weekly forecasts of daily COVID-19 hospital admissions for National Health Service (NHS) Trusts in England between August 2020 and April 2021 using three disease-agnostic forecasting models: a mean ensemble of autoregressive time series models, a linear regression model with 7-day-lagged local cases as a predictor, and a scaled convolution of local cases and a delay distribution. We compared their point and probabilistic accuracy to a mean-ensemble of them all and to a simple baseline model of no change from the last day of admissions. We measured predictive performance using the weighted interval score (WIS) and considered how this changed in different scenarios (the length of the predictive horizon, the date on which the forecast was made, and by location), as well as how much admissions forecasts improved when future cases were known. Results: All models outperformed the baseline in the majority of scenarios. Forecasting accuracy varied by forecast date and location, depending on the trajectory of the outbreak, and all individual models had instances where they were the top- or bottom-ranked model. Forecasts produced by the mean-ensemble were both the most accurate and most consistently accurate forecasts amongst all the models considered. Forecasting accuracy was improved when using future observed, rather than forecast, cases, especially at longer forecast horizons. Conclusions: Assuming no change in current admissions is rarely better than including at least a trend. Using confirmed COVID-19 cases as a predictor can improve admissions forecasts in some scenarios, but this is variable and depends on the ability to make consistently good case forecasts. However, ensemble forecasts can make forecasts that make consistently more accurate forecasts across time and locations. Given minimal requirements on data and computation, our admissions forecasting ensemble could be used to anticipate healthcare needs in future epidemic or pandemic settings

    The impact of COVID-19 vaccination in prisons in England and Wales : a metapopulation model

    Get PDF
    Background: High incidence of cases and deaths due to coronavirus disease 2019 (COVID-19) have been reported in prisons worldwide. This study aimed to evaluate the impact of different COVID-19 vaccination strategies in epidemiologically semi-enclosed settings such as prisons, where staff interact regularly with those incarcerated and the wider community. Methods: We used a metapopulation transmission-dynamic model of a local prison in England and Wales. Two-dose vaccination strategies included no vaccination, vaccination of all individuals who are incarcerated and/or staff, and an age-based approach. Outcomes were quantified in terms of COVID-19-related symptomatic cases, losses in quality-adjusted life-years (QALYs), and deaths. Results: Compared to no vaccination, vaccinating all people living and working in prison reduced cases, QALY loss and deaths over a one-year period by 41%, 32% and 36% respectively. However, if vaccine introduction was delayed until the start of an outbreak, the impact was negligible. Vaccinating individuals who are incarcerated and staff over 50 years old averted one death for every 104 vaccination courses administered. All-staff-only strategies reduced cases by up to 5%. Increasing coverage from 30 to 90% among those who are incarcerated reduced cases by around 30 percentage points. Conclusions: The impact of vaccination in prison settings was highly dependent on early and rapid vaccine delivery. If administered to both those living and working in prison prior to an outbreak occurring, vaccines could substantially reduce COVID-19-related morbidity and mortality in prison settings

    Changes in social contacts in England during the COVID-19 pandemic between March 2020 and March 2021 as measured by the CoMix survey : a repeated cross-sectional study

    Get PDF
    Background During: the Coronavirus Disease 2019 (CAU OVID-19): pandemic, the United Kingdom government imposed public health policies in England to reduce social contacts in hopes of curbing virus transmission. We conducted a repeated cross-sectional study to measure contact patterns weekly from March 2020 to March 2021 to estimate the impact of these policies, covering 3 national lockdowns interspersed by periods of less restrictive policies. Methods and findings The repeated cross-sectional survey data were collected using online surveys of representative samples of the UK population by age and gender. Survey participants were recruited by the online market research company Ipsos MORI through internet-based banner and social media ads and email campaigns. The participant data used for this analysis are restricted to those who reported living in England. We calculated the mean daily contacts reported using a (clustered) bootstrap and fitted a censored negative binomial model to estimate age-stratified contact matrices and estimate proportional changes to the basic reproduction number under controlled conditions using the change in contacts as a scaling factor. To put the findings in perspective, we discuss contact rates recorded throughout the year in terms of previously recorded rates from the POLYMOD study social contact study. The survey recorded 101,350 observations from 19,914 participants who reported 466,710 contacts over 53 weeks. We observed changes in social contact patterns in England over time and by participants’ age, personal risk factors, and perception of risk. The mean reported contacts for adults 18 to 59 years old ranged between 2.39 (95% confidence interval [CI] 2.20 to 2.60) contacts and 4.93 (95% CI 4.65 to 5.19) contacts during the study period. The mean contacts for school-age children (5 to 17 years old) ranged from 3.07 (95% CI 2.89 to 3.27) to 15.11 (95% CI 13.87 to 16.41). This demonstrates a sustained decrease in social contacts compared to a mean of 11.08 (95% CI 10.54 to 11.57) contacts per participant in all age groups combined as measured by the POLYMOD social contact study in 2005 to 2006. Contacts measured during periods of lockdowns were lower than in periods of eased social restrictions. The use of face coverings outside the home has remained high since the government mandated use in some settings in July 2020. The main limitations of this analysis are the potential for selection bias, as participants are recruited through internet-based campaigns, and recall bias, in which participants may under- or over-report the number of contacts they have made

    Using high-resolution contact networks to evaluate SARS-CoV-2 transmission and control in large-scale multi-day events

    Get PDF
    The emergence of highly transmissible SARS-CoV-2 variants has created a need to reassess the risk posed by increasing social contacts as countries resume pre-pandemic activities, particularly in the context of resuming large-scale events over multiple days. To examine how social contacts formed in different activity settings influences interventions required to control Delta variant outbreaks, we collected high-resolution data on contacts among passengers and crew on cruise ships and combined the data with network transmission models. We found passengers had a median of 20 (IQR 10–36) unique close contacts per day, and over 60% of their contact episodes were made in dining or sports areas where mask wearing is typically limited. In simulated outbreaks, we found that vaccination coverage and rapid antigen tests had a larger effect than mask mandates alone, indicating the importance of combined interventions against Delta to reduce event risk in the vaccine era

    Estimating the impact of reopening schools on the reproduction number of SARS-CoV-2 in England, using weekly contact survey data

    Get PDF
    Background: Schools were closed in England on 4 January 2021 as part of increased national restrictions to curb transmission of SARS-CoV-2. The UK government reopened schools on 8 March. Although there was evidence of lower individual-level transmission risk amongst children compared to adults, the combined effects of this with increased contact rates in school settings and the resulting impact on the overall transmission rate in the population were not clear. Methods: We measured social contacts of > 5000 participants weekly from March 2020, including periods when schools were both open and closed, amongst other restrictions. We combined these data with estimates of the susceptibility and infectiousness of children compared with adults to estimate the impact of reopening schools on the reproduction number. Results: Our analysis indicates that reopening all schools under the same measures as previous periods that combined lockdown with face-to-face schooling would be likely to increase the reproduction number substantially. Assuming a baseline of 0.8, we estimated a likely increase to between 1.0 and 1.5 with the reopening of all schools or to between 0.9 and 1.2 reopening primary or secondary schools alone. Conclusion: Our results suggest that reopening schools would likely halt the fall in cases observed between January and March 2021 and would risk a return to rising infections, but these estimates relied heavily on the latest estimates or reproduction number and the validity of the susceptibility and infectiousness profiles we used at the time of reopening

    SARS-CoV-2 antibodies protect against reinfection for at least 6 months in a multicentre seroepidemiological workplace cohort

    Get PDF
    Identifying the potential for Severe Acute Respiratory Syndrome : Coronavirus 2 (SARS-CoV-2) reinfection is crucial for understanding possible long-term epidemic dynamics. We analysed longitudinal PCR and serological testing data from a prospective cohort of 4,411 United States employees in 4 states between April 2020 and February 2021. We conducted a multivariable logistic regression investigating the association between baseline serological status and subsequent PCR test result in order to calculate an odds ratio for reinfection. We estimated an odds ratio for reinfection ranging from 0.14 (95% CI: 0.019 to 0.63) to 0.28 (95% CI: 0.05 to 1.1), implying that the presence of SARS-CoV-2 antibodies at baseline is associated with around 72% to 86% reduced odds of a subsequent PCR positive test based on our point estimates. This suggests that primary infection with SARS-CoV-2 provides protection against reinfection in the majority of individuals, at least over a 6-month time period. We also highlight 2 major sources of bias and uncertainty to be considered when estimating the relative risk of reinfection, confounders, and the choice of baseline time point and show how to account for both in reinfection analysis
    • …
    corecore