14 research outputs found

    Considering Maternal Dietary Modulators for Epigenetic Regulation and Programming of the Fetal Epigenome

    No full text
    Fetal life is characterized by a tremendous plasticity and ability to respond to various environmental and lifestyle factors, including maternal nutrition. Identification of the role of dietary factors that can modulate and reshape the cellular epigenome during development, including methyl group donors (e.g., folate, choline) and bioactive compounds (e.g., polyphenols) is of great importance; however, there is insufficient knowledge of a particular effect of each type of modulator and/or their combination on fetal life. To enhance the quality and safety of food products for proper fetal health and disease prevention in later life, a better understanding of the underlying mechanisms of dietary epigenetic modulators during the critical prenatal period is necessary. This review focuses on the influence of maternal dietary components on DNA methylation, histone modification, and microRNAs, and summarizes current knowledge of the effect and importance of dietary components on epigenetic mechanisms that control the proper expression of genetic information. Evidence reveals that some components in the maternal diet can directly or indirectly affect epigenetic mechanisms. Understanding the underlying mechanisms of how early-life nutritional environment affects the epigenome during development is of great importance for the successful prevention of adult chronic diseases through optimal maternal nutrition

    Approche transcriptomique du bénéfice fonctionnel des folates et étude de l'effet de la Fumosine B1

    No full text
    PARIS-AgroParisTech Centre Paris (751052302) / SudocSudocFranceF

    Homocysteine Metabolism in Children with Down Syndrome: In Vitro Modulation

    Get PDF
    The gene for cystathionine β-synthase (CBS) is located on chromosome 21 and is overexpressed in children with Down syndrome (DS), or trisomy 21. The dual purpose of the present study was to evaluate the impact of overexpression of the CBS gene on homocysteine metabolism in children with DS and to determine whether the supplementation of trisomy 21 lymphoblasts in vitro with selected nutrients would shift the genetically induced metabolic imbalance. Plasma samples were obtained from 42 children with karyotypically confirmed full trisomy 21 and from 36 normal siblings (mean age 7.4 years). Metabolites involved in homocysteine metabolism were measured and compared to those of normal siblings used as controls. Lymphocyte DNA methylation status was determined as a functional endpoint. The results indicated that plasma levels of homocysteine, methionine, S-adenosylhomocysteine, and S-adenosylmethionine were all significantly decreased in children with DS and that their lymphocyte DNA was hypermethylated relative to that in normal siblings. Plasma levels of cystathionine and cysteine were significantly increased, consistent with an increase in CBS activity. Plasma glutathione levels were significantly reduced in the children with DS and may reflect an increase in oxidative stress due to the overexpression of the superoxide dismutase gene, also located on chromosome 21. The addition of methionine, folinic acid, methyl-B(12), thymidine, or dimethylglycine to the cultured trisomy 21 lymphoblastoid cells improved the metabolic profile in vitro. The increased activity of CBS in children with DS significantly alters homocysteine metabolism such that the folate-dependent resynthesis of methionine is compromised. The decreased availability of homocysteine promotes the well-established “folate trap,” creating a functional folate deficiency that may contribute to the metabolic pathology of this complex genetic disorder

    Prevention of Adult Colitis by Oral Ferric Iron in Juvenile Mice Is Associated with the Inhibition of the Tbet Promoter Hypomethylation and Gene Overexpression

    No full text
    International audienceIron is an essential nutrient needed for physiological functions, particularly during the developmental period of the early childhood of at-risk populations. The purpose of this study was to investigate, in an experimental colitis, the consequences of daily oral iron ingestion in the early period on the inflammatory response, the spleen T helper (Th) profiles and the associated molecular mechanisms. Juvenile mice orally received microencapsulated ferric iron or water for 6 weeks. On adult mice, we induced a sham or experimental trinitrobenzene sulfonic acid (TNBS) moderate colitis during the last week of the experiment before sacrificing the animals 7 days later. The severity of the gut inflammation was assessed by macroscopic damage scores (MDS) and the myeloperoxidase activity (MPO). Th profiles were evaluated by the examination of the splenic gene expression of key transcription factors of the Th differentiation (Tbet, Gata3, Foxp3 and RORÎł) and the methylation of their respective promoter. While TNBS-induced colitis was associated with a change of the Th profile (notably an increase in the Tbet/Gata3 ratio in the spleen), the colitis-inhibition induced by ferric iron was associated with a limitation of the splenic Th profiles perturbation. The inhibition of the splenic Tbet gene overexpression was associated with an inhibition of promoter hypomethylation. In summary, mice treated by long-term oral ferric iron in the early period of life exhibited an inhibition of colitis associated with the inhibition of the splenic Tbet promoter hypomethylation and gene overexpression
    corecore