550 research outputs found
Robust plasmon waveguides in strongly-interacting nanowire arrays
Arrays of parallel metallic nanowires are shown to provide a tunable, robust,
and versatile platform for plasmon interconnects, including high-curvature
turns with minimum signal loss. The proposed guiding mechanism relies on gap
plasmons existing in the region between adjacent nanowires of dimers and
multi-wire arrays. We focus on square and circular silver nanowires in silica,
for which excellent agreement between both boundary element method and multiple
multipolar expansion calculations is obtained. Our work provides the tools for
designing plasmon-based interconnects and achieving high degree of integration
with minimum cross talk between adjacent plasmon guides.Comment: 4 pages, 5 figure
Temporal Quantum Control with Graphene
We introduce a novel strategy for controlling the temporal evolution of a
quantum system at the nanoscale. Our method relies on the use of graphene
plasmons, which can be electrically tuned in frequency by external gates.
Quantum emitters (e.g., quantum dots) placed in the vicinity of a graphene
nanostructure are subject to the strong interaction with the plasmons of this
material, thus undergoing time variations in their mutual interaction and
quantum evolution that are dictated by the externally applied gating voltages.
This scheme opens a new path towards the realization of quantum-optics devices
in the robust solid-state environment of graphene.Comment: 5 pages, 2 figure
Tunneling mechanism of light transmission through metallic films
A mechanism of light transmission through metallic films is proposed,
assisted by tunnelling between resonating buried dielectric inclusions. This is
illustrated by arrays of Si spheres embedded in Ag. Strong transmission peaks
are observed near the Mie resonances of the spheres. The interaction among
various planes of spheres and interference effects between these resonances and
the surface plasmons of Ag lead to mixing and splitting of the resonances.
Transmission is proved to be limited only by absorption. For small spheres, the
effective dielectric constant can be tuned to values close to unity and a
method is proposed to turn the resulting materials invisible.Comment: 4 papges, 5 figure
The role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials
We assert that the physics underlying the extraordinary light transmission
(reflection) in nanostructured materials can be understood from rather general
principles based on the formal scattering theory developed in quantum
mechanics. The Maxwell equations in passive (dispersive and absorptive) linear
media are written in the form of the Schr\"{o}dinger equation to which the
quantum mechanical resonant scattering theory (the Lippmann-Schwinger
formalism) is applied. It is demonstrated that the existence of long-lived
quasistationary eigenstates of the effective Hamiltonian for the Maxwell theory
naturally explains the extraordinary transmission properties observed in
various nanostructured materials. Such states correspond to quasistationary
electromagnetic modes trapped in the scattering structure. Our general approach
is also illustrated with an example of the zero-order transmission of the
TE-polarized light through a metal-dielectric grating structure. Here a direct
on-the-grid solution of the time-dependent Maxwell equations demonstrates the
significance of resonances (or trapped modes) for extraordinary light
transmissioComment: 14 pages, 6 figures; Discussion in Section 4 expanded; typos
corrected; a reference added; Figure 4 revise
Electrically driven photon emission from individual atomic defects in monolayer WS2.
Quantum dot-like single-photon sources in transition metal dichalcogenides (TMDs) exhibit appealing quantum optical properties but lack a well-defined atomic structure and are subject to large spectral variability. Here, we demonstrate electrically stimulated photon emission from individual atomic defects in monolayer WS2 and directly correlate the emission with the local atomic and electronic structure. Radiative transitions are locally excited by sequential inelastic electron tunneling from a metallic tip into selected discrete defect states in the WS2 bandgap. Coupling to the optical far field is mediated by tip plasmons, which transduce the excess energy into a single photon. The applied tip-sample voltage determines the transition energy. Atomically resolved emission maps of individual point defects closely resemble electronic defect orbitals, the final states of the optical transitions. Inelastic charge carrier injection into localized defect states of two-dimensional materials provides a powerful platform for electrically driven, broadly tunable, atomic-scale single-photon sources
Nonlinear photoluminescence in gold thin films
Promising applications in photonics are driven by the ability to fabricate
crystal-quality metal thin films of controlled thickness down to a few
nanometers. In particular, these materials exhibit a highly nonlinear response
to optical fields owing to the induced ultrafast electron dynamics, which is
however poorly understood on such mesoscopic length scales. Here, we reveal a
new mechanism that controls the nonlinear optical response of thin metallic
films, dominated by ultrafast electronic heat transport when the thickness is
sufficiently small. By experimentally and theoretically studying electronic
transport in such materials, we explain the observed temporal evolution of
photoluminescence in pump-probe measurements that we report for crystalline
gold flakes. Incorporating a first-principles description of the electronic
band structures, we model electronic transport and find that ultrafast thermal
dynamics plays a pivotal role in determining the strength and time-dependent
characteristics of the nonlinear photoluminescence signal, which is largely
influenced by the distribution of hot electrons and holes, subject to diffusion
across the film as well as relaxation to lattice modes. Our findings introduce
conceptually novel elements triggering the nonlinear optical response of
nanoscale materials while suggesting additional ways to control and leverage
hot carrier distributions in metallic films.Comment: 20 pages, 6 figures, 64 reference
Meson Thermalization in Various Dimensions
In gauge/gravity duality framework the thermalization of mesons in strongly
coupled (p+1)-dimensional gauge theories is studied for a general Dp-Dq system,
q>=p, using the flavour Dq-brane as a probe. Thermalization corresponds to the
horizon formation on the flavour Dq-brane. We calculate the thermalization
time-scale due to a time-dependent change in the baryon number chemical
potential, baryon injection in the field theory. We observe that for such a
general system it has a universal behaviour depending only on the t'Hooft
coupling constant and the two parameters which describe how we inject baryons
into the system. We show that this universal behaviour is independent of the
details of the theory whether it is conformal and/or supersymmetric.Comment: 26 pages, 2 figure
Velocity-selective sublevel resonance of atoms with an array of current-carrying wires
Resonance transitions between the Zeeman sublevels of optically-polarized Rb
atoms traveling through a spatially periodic magnetic field are investigated in
a radio-frequency (rf) range of sub-MHz. The atomic motion induces the
resonance when the Zeeman splitting is equal to the frequency at which the
moving atoms feel the magnetic field oscillating. Additional temporal
oscillation of the spatially periodic field splits a motion-induced resonance
peak into two by an amount of this oscillation frequency. At higher oscillation
frequencies, it is more suitable to consider that the resonance is mainly
driven by the temporal field oscillation, with its velocity-dependence or
Doppler shift caused by the atomic motion through the periodic field. A
theoretical description of motion-induced resonance is also given, with
emphasis on the translational energy change associated with the internal
transition.Comment: 7 pages, 3 figures, final versio
Time singularities of correlators from Dirichlet conditions in AdS/CFT
Within AdS/CFT, we establish a general procedure for obtaining the leading
singularity of two-point correlators involving operator insertions at different
times. The procedure obtained is applied to operators dual to a scalar field
which satisfies Dirichlet boundary conditions on an arbitrary time-like surface
in the bulk. We determine how the Dirichlet boundary conditions influence the
singularity structure of the field theory correlation functions. New
singularities appear at boundary points connected by null geodesics bouncing
between the Dirichlet surface and the boundary. We propose that their
appearance can be interpreted as due to a non-local double trace deformation of
the dual field theory, in which the two insertions of the operator are
separated in time. The procedure developed in this paper provides a technical
tool which may prove useful in view of describing holographic thermalization
using gravitational collapse in AdS space.Comment: 30 pages, 3 figures. Version as in JHE
- …