3,832 research outputs found

    The Ramsey property for operator spaces and noncommutative Choquet simplices

    Get PDF
    The noncommutative Gurarij space NG, initially defined by Oikhberg, is a canonical object in the theory of operator spaces. As the Fraisse limit of the class of finite-dimensional nuclear operator spaces, it can be seen as the noncommutative analogue of the classical Gurarij Banach space. In this paper, we prove that the automorphism group of NG is extremely amenable, i.e. any of its actions on compact spaces has a fixed point. The proof relies on the Dual Ramsey Theorem, and a version of the Kechris-Pestov-Todorcevic correspondence in the setting of operator spaces. Recent work of Davidson and Kennedy, building on previous work of Arveson, Effros, Farenick, Webster, and Winkler, among others, shows that nuclear operator systems can be seen as the noncommutative analogue of Choquet simplices. The analogue of the Poulsen simplex in this context is the matrix state space NP of the Fraisse limit A(NP) of the class of finite-dimensional nuclear operator systems. We show that the canonical action of the automorphism group of NP on the compact set NP1 of unital linear functionals on A(NP) is minimal and it factors onto any minimal action, whence providing a description of the universal minimal flow ofAut(NP). (C) 2021 Elsevier Inc. All rights reserved

    Integrable su(3) spin chain combining different representations

    Full text link
    The general expression for the local matrix t(θ)t(\theta) of a quantum chain with the site space in any representation of su(3) is obtained. This is made by generalizing t(θ)t(\theta) from the fundamental representation and imposing the fulfillment of the Yang-Baxter equation. Then, a non-homogeneous spin chain combining different representations of su(3) is solved by developing a method inspired in the nested Bethe ansatz. The solution for the eigenvalues of the trace of the monodromy matrix is given as two coupled Bethe equations. A conjecture about the solution of a chain with the site states in different representations of su(n) is presented. The thermodynamic limit of the ground state is calculated.Comment: PlainTex harvmac, 30 pages, 7 figures, to appear in Journal of Physics

    Mn valence instability in La2/3Ca1/3MnO3 thin films

    Full text link
    A Mn valence instability on La2/3Ca1/3MnO3 thin films, grown on LaAlO3 (001)substrates is observed by x-ray absorption spectroscopy at the Mn L-edge and O K-edge. As-grown samples, in situ annealed at 800 C in oxygen, exhibit a Curie temperature well below that of the bulk material. Upon air exposure a reduction of the saturation magnetization, MS, of the films is detected. Simultaneously a Mn2+ spectral signature develops, in addition to the expected Mn3+ and Mn4+ contributions, which increases with time. The similarity of the spectral results obtained by total electron yield and fluorescence yield spectroscopy indicates that the location of the Mn valence anomalies is not confined to a narrow surface region of the film, but can extend throughout the whole thickness of the sample. High temperature annealing at 1000 C in air, immediately after growth, improves the magnetic and transport properties of such films towards the bulk values and the Mn2+ signature in the spectra does not appear. The Mn valence is then stable even to prolonged air exposure. We propose a mechanism for the Mn2+ ions formation and discuss the importance of these observations with respect to previous findings and production of thin films devices.Comment: Double space, 21 pages, 6 figure

    Quantum Transition State Theory for proton transfer reactions in enzymes

    Full text link
    We consider the role of quantum effects in the transfer of hyrogen-like species in enzyme-catalysed reactions. This study is stimulated by claims that the observed magnitude and temperature dependence of kinetic isotope effects imply that quantum tunneling below the energy barrier associated with the transition state significantly enhances the reaction rate in many enzymes. We use a path integral approach which provides a general framework to understand tunneling in a quantum system which interacts with an environment at non-zero temperature. Here the quantum system is the active site of the enzyme and the environment is the surrounding protein and water. Tunneling well below the barrier only occurs for temperatures less than a temperature T0T_0 which is determined by the curvature of potential energy surface near the top of the barrier. We argue that for most enzymes this temperature is less than room temperature. For physically reasonable parameters quantum transition state theory gives a quantitative description of the temperature dependence and magnitude of kinetic isotope effects for two classes of enzymes which have been claimed to exhibit signatures of quantum tunneling. The only quantum effects are those associated with the transition state, both reflection at the barrier top and tunneling just below the barrier. We establish that the friction due to the environment is weak and only slightly modifies the reaction rate. Furthermore, at room temperature and for typical energy barriers environmental degrees of freedom with frequencies much less than 1000 cm1^{-1} do not have a significant effect on quantum corrections to the reaction rate.Comment: Aspects of the article are discussed at condensedconcepts.blogspot.co

    Stochastic ionization through noble tori: Renormalization results

    Full text link
    We find that chaos in the stochastic ionization problem develops through the break-up of a sequence of noble tori. In addition to being very accurate, our method of choice, the renormalization map, is ideally suited for analyzing properties at criticality. Our computations of chaos thresholds agree closely with the widely used empirical Chirikov criterion

    Evaluation of the agronomic performance of 'Syrah' and 'Tempranillo' when grafted on 12 rootstocks

    Get PDF
    Beyond pest resistance, rootstocks significantly influence the performance of grapevine varieties. However, the effect of the rootstock is strongly affected by its interaction with the environment, and it is therefore necessary to evaluate their influence in a particular terroir. With the aim of evaluating the influence of 12 rootstocks on the agronomic performance of 'Syrah' and 'Tempranillo', a trial was established in 2011 and 2012 in Miranda de Arga (Navarra, Spain), under the typical environmental conditions of the Ebro Valley. Growth and yield, as well as industrial and phenolic maturity parameters were analysed during four consecutive seasons (2015-2018). Most rootstocks showed a similar performance with both varieties, not always following the trends reported in bibliography, which highlights the relevance of studying rootstocks in different conditions. 3309 C was the rootstock conferring the highest vigour, whereas the lowest were provided by 420 A MGt and 'Fercal'. The implications on grape composition were much more diverse, and were partially conditioned by yield. Results were obtained during the four first harvests of the vineyard, and could therefore change to some extent as the vineyard reaches stability

    Solution of the Multi-Channel Anderson Impurity Model: Ground state and thermodynamics

    Full text link
    We present the solution of the SU(N) x SU(M) Anderson impurity model using the Bethe-Ansatz. We first explain what extensions to the formalism were required for the solution. Subsequently we determine the ground state and derive the thermodynamics over the full range of temperature and fields. We identify the different regimes of valence fluctuation at high temperatures, followed by moment formation or intrinsic mixed valence at intermediate temperatures and a low temperature non-Fermi liquid phase. Among other things we obtain the impurity entropy, charge valence and specific heat over the full range of temperature. We show that the low-energy physics is governed by a line of fixed points. This describes non-Fermi-liquid behavior in the integral valence regime, associated with moment formation, as well as in the mixed valence regime where no moment forms.Comment: 28 pages, 8 figures, 1 tabl

    On spin chains and field theories

    Full text link
    We point out that the existence of global symmetries in a field theory is not an essential ingredient in its relation with an integrable model. We describe an obvious construction which, given an integrable spin chain, yields a field theory whose 1-loop scale transformations are generated by the spin chain Hamiltonian. We also identify a necessary condition for a given field theory to be related to an integrable spin chain. As an example, we describe an anisotropic and parity-breaking generalization of the XXZ Heisenberg spin chain and its associated field theory. The system has no nonabelian global symmetries and generally does not admit a supersymmetric extension without the introduction of more propagating bosonic fields. For the case of a 2-state chain we find the spectrum and the eigenstates. For certain values of its coupling constants the field theory associated to this general type of chain is the bosonic sector of the Leigh-Strassler deformation of N=4 SYM theory.Comment: 22 pages, Latex; v2. typos correcte
    corecore